Macro & meso-scale study in composite lay-up orientation effect on adhesive material used in wind turbine blades

Macro & meso-scale study in composite lay-up orientation effect on adhesive material used in wind turbine blades

Venkadesh Raman Monssef Drissi-Habti 

Institut de Recherche Technologique (IRT) Jules Verne, Chemin du Chaffault, 44340 Bouguenais, France

PRES LUNAM IFSTTAR, CS4 Route de Bouaye, 44344 Bouguenais France, Consortium Durability of Intelligent Composite Structures (GIS DURSI)

Corresponding Author Email: 
raman.venkadesh@irt-jules-verne.fr, monssef .drissi-habti@ifsttar.fr
Page: 
25-44
|
DOI: 
https://doi.org/10.3166/RCMA.26.25-44
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Adhesive material is one of the main and fragile component in wind turbine blades. Being large in size compared to the conventional ones, the wind turbine blades are manufactured with composite materials. Generally blades are made by upper and lower sections separately and are joined together by adhesive materials. New generation wind turbines with an increased blade length makes the assembly procedure complicated for the blade manufacturers. Also the adhesive material failure is dependent on the rate of stress transfer between composite and adhesive materials. So, it becomes essential to study the bonding failure both in local and global scale of wind turbine blades. In this paper, we discuss an influence of lay-up orientation of the composite material on the failure of adhesive material used in wind turbine model for macro-scale and single-lap-joint model for meso-scale study.

Keywords: 

adhesive bonding, failure, wind turbine blade, composite material, finite element analysis.

1. Introduction
2. Analytical method
3. Numerical analysis
4. Discussions
5. Conclusion
Acknowledgements

This work is part of the EVEREST project managed by IRT Jules Verne (French Institute of Research and Technology in Advanced Manufacturing Technologies for Composite, Metallic and Hybrid Structures). The authors wish to thank the industrial and academic partners of this project; respectively ALSTOM, Europe Technologies, IFSTTAR, UBS, ENSAM Angers, CNRS.

  References

Alberto Carpinteri M. P. (2013). Influence of the interface bonding strength on brittle crack propagation in bi-material structural components. 15th European Conference on Fracture (ECF). (T Technology > TJ Mechanical engineering and machinery)

Ashwill T. D. (2010). Passive load control for large wind turbines. American Institute of Aeronautics and Astronautics, no SAND2010-3276C.

Asseff N. S., Mahfuz H. (2009, Oct). Design and finite element analysis of an ocean current turbine blade. In Oceans 2009, p. 1-6.

Cognard J. (2006). Some recent progress in adhesion technology and science. Comptes Rendus Chimie, vol. 9, no 1, p. 13 - 24. (Adhesion Adhesion)

Conshohocken W. (2002). Composite materials handbook (vol. 2). Department of defense. (Polymer matrix composite materials properties)

Cox K., Echtermeyer A. (2012). Structural design and analysis of a 10mw wind turbine blade. Energy Procedia, vol. 24, p. 194 - 201. (Selected papers from Deep Sea Offshore Wind Ramp;D Conference, Trondheim, Norway, 19-20 January 2012)

Cox K., Echtermeyer A. (2013). Geometric scaling effects of bend-twist coupling in rotor blades. Energy Procedia, vol. 35, p. 2 - 11. (DeepWind’2013 - Selected papers from 10th Deep Sea Offshore Wind Ramp D Conference)

Das S. (2001). The cost of automotive polymer composites:a review and assessment of doe’s lightweight materials composites research. Energy dicision, Oak Ridge National Laboratory.

Gonzlez A. C., Bussel G. van, Nijssen R. (2008). Evaluation of bondline thickness on wind turbine blade subcomponents. Mémoire de Master non publié, Eindhoven:Technische Universiteit Eindhoven. (Master sustainable energy technology)

G.P. Zou K. S., Taheri F. (2004). An analytical solution for the analysis of symmetric composite adhesively bonded joints. Composite Structures, vol. 65, no 3-4, p. 499 - 510.

Huang H., Yang C. (2001). Elastic-plastic model of adhesive-bonded composite joints. 13th international conference on composite materials.

Leone D. C. G., Frank A.Jr. Girolamo Donato. (2012). Progressive damage analysis of bonded composite joints. Technical Report, NASA/TM-2012-217790, L-20210, NF1676L-15757.

Lobitz D., P.S.Veers. (1998). Aeroelastic behavior of twist-coupled hawt blades. American Institute of Aeronautics and Astronautics.

Luo Q., Tong L. (2008). Analytical solutions for adhesive composite joints considering large deflection and transverse shear deformation in adherends. International Journal of Solids and Structures, vol. 45, no 22-23, p. 5914 - 5935.

Pinto A. M. G., Magalhaes A. G., Campilho R. D. S. G., Moura M. F. S. F. de, Baptista A. P. M. (2009). Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive. Journal of Adhesion, vol. 85, p. 351–376.

Purimpat S., Jerome R., Shahram A. (2013). Effect of fiber angle orientation on a laminated composite single-lap adhesive joint. Advanced Composite Materials, vol. 22, no 3, p. 139-149.

Quaresimin M., Ricotta M. (2006). Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials. Composites Science and Technology, vol. 66, no 5, p. 647 - 656. (Reliability and Life Prediction of Composite Structures9th European-Japanese Symposium on Composite Materials)

Saleh P., Challita G., Khalil K. (2015). Stress concentration coefficient in a composite double lap adhesively bonded joint. International Journal of Adhesion and Adhesives, vol. 63, p. 102 - 107.

Shahin K., Taheri F. (2008). The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. International Journal of Solids and Structures, vol. 45, no 25-26, p. 6284 - 6300. sheet T. data. (s. d.). Macroplast uk 1340-b90.

Smeltzer S., Lundgren E. (2006). Analytical and numerical results for an adhesively bonded joint subjected to pure bending. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

Thongchai Fongsamootr C. D. (2005). Stress analysis of thin adhesive bonding dissimilar adherends single lap joints. 11th International conference on Fractur.

Tong L. (1996). Bond strength for adhesive-bonded single-lap joints. Acta Mechanica, vol. 117, no 1, p. 101–113.

Yang C., Huang H., Tomblin J. S., Sun W. (2004). Elastic-plastic model of adhesive-bonded single-lap composite joints. Journal of Composite Materials, vol. 38, no 4, p. 293-309.

Zhimin Li C. L. (2013). Effect of layup design on properties of wind turbine blade. Frontiers of Engineering Mechanics Research, vol. 2, p. 63-70.