Abstract of heat transfer coefficient modelation in single-phase systems inside pipes

Abstract of heat transfer coefficient modelation in single-phase systems inside pipes

Yanán C. Medina Nislan H. Khandy  Oscar M.C. Fonticiella  Osvaldo F.G. Morales 

Mechanical Engineering Faculty, Universidad Central de Las Villas, Highway to Camajuaní, Cuba

Mechanical Engineering Department, New Mexico State University, USA

Mechanical Engineering Faculty, Universidad Central de Las Villas, Highway to Camajuaní, Cuba

Technical Sciences Faculty, Matanzas University, Highway to Varadero, km 3½, Cuba

Corresponding Author Email: 
ycamaraza1980@yahoo.com
Page: 
126-131
|
DOI: 
http://doi.org/10.18280/mmep.040303
Received: 
|
Accepted: 
|
Published: 
30 September 2017
| Citation

OPEN ACCESS

Abstract: 

This paper presents the results of the continuity of the research process carried out in the center of environmental and energy studies that belonged to the Technical Sciences Faculty of the University of Matanzas related to obtaining non-dimensional models for the determination of the average coefficient of heat transfer in turbulent flows inside smooth and straight tubes. The research consists of a regression analysis performed between the Reynolds number, the Prandtl number and the friction factor, using for this purpose experimental data reported by different authors, establishing a comparison with the equations of Petukhov and Gnielinsky, exact and referenced in the known literature, obtaining that there are no significant differences, due to the high similarity between the results obtained from these models in the studied range of the work parameters, although the divergence between the experimental values and those obtained by the proposed model is slightly smaller.

Keywords: 

Average Coefficient, Heat Transfer, Model, Regression

1. Introduction
2. Materials and Employed Methods
3. Conclusions
Acknowledgement
Nomenclature
  References

[1] Zhang H., Fang X., Shang H., Chen W. (2015). Flow condensation heat transfer correlations, Int. J. Refrig., Vol. 59, pp. 102–114. DOI: 10.1016/j.ijrefrig.2015.07.013

[2] Dirker J., Van der Vyver H. (2004). Convection heat transfer in concentric annuli, Experimental Heat Transfer, Vol. 17, No. 1, pp. 19-29. DOI: 10.1080/08916150490246528

[3] Liu D., Zheng Y., Moore A., Ferdows M. (2017). Spectral element simulations of three-dimensional convective heat transfer, International Journal of Heat and Mass Transfer, Vol. 111, pp. 1023-1038. DOI:10.1016/j.ijheatmasstransfer.2017.04.066

[4] Will J.B., Kruyt N.P., Venner C.H. (2017). An experimental study of forced convective heat transfer, International Journal of Heat and Mass Transfer, Vol.109, pp. 1059-1067. DOI:10.1016/j.ijheatmasstransfer.2017.04.066

[5] Bhagwat S.M., Ghajar A.J. (2016). Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined tubes, Exp. Therm. Fluid Sci., Vol. 79, pp. 301–318. DOI: 10.1016/j.expthermflusci.2016.08.00

[6] Kosky P.G., Staub F.W. (1971). Local condensing heat transfer Coefficient in the annular flow regime, AICHE Journal, Vol. 17, No. 5, pp. 1037–1043. DOI:10.1002/aic.690170505

[7] Kawamura H., Ohsaka K., Abe H., Yamamoto K. (1998). DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid, International Journal Heat Fluid Flow Vol. 19, No. 5, pp. 482–491. DOI: 10.1016/S0142-727X(98)10026-7

[8] Cttani L., Bozzoli F., Raineri S. (2017). Experimental study of the transitional flow regime in coiled tubes by the estimation of local convective heat transfer coefficient, International Journal of Heat and Mass Transfer, Vol. 112, pp. 825-836. DOI: 10.1016/j.ijheatmasstransfer.2017.04.066

[9] Shah M.M. (2013). A general correlation for heat transfer during film condensation inside tubes, Ashrae Transaction DE-13-001, Vol. 119, No. 2, pp. 547-556. DOI: 10.1016/0017-9310(79)90058-9

[10] Tandon T.N., Varma H.K., Gupta C.P. (1995). Heat transfer during forced convection condensation inside horizontal tube, Int. J. Refrig., Vol. 18, No. 3, pp. 210–214. DOI: 10.1016/0140-7007(95)90316-R

[11] Bohdal T., Charun H., Sikora M. (2012). Heat transfer during condensation of refrigerants in tubular minichannels, Arch. Thermodyn., Vol. 33, No. 2, pp. 3-22. DOI: 10.2478/v10173-012-0008-x

[12] Bohdal T., Charun H., Sikora M. (2017). Dominant dimensionless groups controlling heat transfer coefficient during flow condensation inside tubes, International Journal of Heat and Mass Transfer, Vol. 112, pp. 465-479. DOI: 10.1016/j.ijheatmasstransfer.2017.04.104

[13] Camaraza Y. (2017). Introducción a la termotransferencia, Editorial Universitaria, La Habana, Cuba, pp.460-470. ISBN 978-959-16-3286-9

[14] Bhagwat S.M., Ghajar A.J. (2016). Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined tubes, Exp.Therm. Fluid Sci., Vol. 79, pp. 301–318. DOI:10.1016/j.expthermflusci.2016.08.00

[15] Camaraza Y., Landa J., López D.J., García O.F. (2011). Ecuación explicita para el cálculo de los factores de fricción, Tecnología Química, Vol. 30, No.1, pp. 76-83. DOI: 10.1590/2224-6185.2010.1.%25x

[16] Alam M.S. Islam T., Uddin M.J. (2016). Mathematical modelling for heat transfer of a micropolar fluid along a permeable stretching/shrinking wedge with heat generation/absorption, Mathematical Modelling of Engineering Problems, Vol. 3,No. 1, pp. 1-9. DOI:10.18280/mmep.030101

[17] Zhang W., Du X., Yang L., Yang Y. (2016). Research on performance of finned tube bundles of indirect aircooled heat exchangers, Mathematical Modelling of Engineering Problems, Vol. 3, No. 1, pp. 47-51. DOI:10.18280/mmep.030108