The Effects of Sintering Temperature and Titanium Ratio on Structural and Electrical Properties of New PZT-CNS Ceramics

The Effects of Sintering Temperature and Titanium Ratio on Structural and Electrical Properties of New PZT-CNS Ceramics

Abdelhek MeklidAhmed Boutarfaia  

Laboratory of Applied Chemistry, University of Biskra, B. P. 145, 07000, Biskra, Algeria

Corresponding Author Email: 
ah.meklid@yahoo.fr
Page: 
1-5
|
DOI: 
https://doi.org/10.18280/mmc_c.790101
Received: 
11 Febuary 2018
| |
Accepted: 
18 April 2018
| | Citation

OPEN ACCESS

Abstract: 

In this contribution, (0.80-x)Pb(Cr1/5,Ni1/5,Sb3/5)O3-xPbTiO3-0.20PbZrO3 perovskiteceramics namely PZT-CNSwere prepared by solid state reaction method. The obtained samples have been characterized by different techniques including XRD, density test, SEM analysis, and Dielectric measurements in order to investigate the effects of sintering temperature and titanium content on microstructure and dielectric properties. The obtained experimental results have been reported and well discussed.

Keywords: 

ceramics, dielectric properties, perovskite, SEM, XRD

1. Introduction
2. Experimental Part
3. Results and Discussion
4. Conclusion
  References

[1] Pan L, Zhu G. (2016). Perovskite Nanomaterials-Synthesis, Characterization, and applications. (INTECH edition).

[2] Newnham RE, Amin A. (1999). Smart systems: microphones, fish farming, and beyond-smart materials, acting as both sensors and actuators, can mimic biological behavior. Chemtech. 29: 38-47.

[3] Uchino K. (1998). Materials issues in design and performance of piezoelectric actuators: An overview. Acta Mate 46: 3745-3753.

[4] Ranjan R, Kumar R, Behera B. Choudhary RNP. (2009). Effect of Sm on structural, dielectric and conductivity properties of PZT ceramics. Mater Chem Phys 115: 473-477.

[5] Lau ST, Kwok KW, Chan HLW, Choy CL. (2002) Piezoelectric composite hydrophone array. Sens Actu Phys 96: 14-20. 

[6] Zeng T, Dong XL, Chen ST, Yang H. (2007). Processing and piezoelectric properties of porous PZT ceramics. Ceram Inte 33: 395-399.

[7] Rai R, Sharma S, Choudhary RNP. (2006). Effect of Al Doping on structural and dielectric properties of PLZT cramics. J Mater Sci 41: 4259-4265.

[8] Hagh NM, Kerman K, Jadidian B, Safari A. (2009). Dielectric and piezoelectric properties of Cu2+-doped alkali niobates. J Euro Ceram Soci 29: 2325-2332.

[9] Chandratreya SS, Fulrath RM, Pask JAY. (1981) Reaction mechanisms in the formation of PZT solid solutions. J Am Ceram Soci 64: 422-425.

[10] Cheng SY, Fu SL, Wei CC, Ke GM. (1986). The properties low-temperature fixed piezoelectric ceramics. J Mater Sci 21: 571-576. 

[11] Sutjarittangtham K, Tawichai N, Intatha  U, Eitssayeam S, Pengpat K, Rujijanagul G. (2009). The Properties Low-Temperature Fixed Piezoelectric Ceramics Dielectric and Piezoelectric Properties of Sr Doped 0.8PZT-0.2PNN Ceramics. Journal of ferroelectrics 384: 56-71.

[12] Kour P, Kumar P, Kar M, Sinha SK. (2013). Effect of Strontium Substitution on dielectric constants of PZT nanocrystalline ceramics. AIP Conf. Proc 1536: 667-668.

[13]  Chu SY, Chen TY, Tsai AT. (2003). piézoelectric properties of Nb-doped PZT ceramics and their applications. Integrated Ferroelectrics 58: 1293-1309. 

[14] Abba M, Boutarfaia A, Necira Z. Abdessalem N, Menasra H, Meklid A. (2013). Investigation on the microstructure and electrical properties of the compositionally modified PZT ceramics prepared by mixed-oxide method. Materials  Sciences and Applications 4: 723-729. 

[15] Naceur H, Megriche A, El Maaoui M. (2013). Frequency-dependant dielectric characteristics and conductivity behavior of Sr1−x(Na0.5Bi0.5)xBi2Nb2O9 (x = 0.0, 0.2, 0.5, 0.8 and 1.0) ceramics. Oriental Journal of Chemistry 29: 937-944.

[16] Abba M. (2013). Synthèse, caractérisation et étude piézo-électriques des céramiques de type PZT Pb1-yLay[ZrxTiz(Mo1/3In2/3)1-(x+z)]1-Y/4O3, PH.D. Thesis, University of Biskra-Algeria.

[17] Demirezen S, Kaya A, Yeris_kin SA, Balbas M, Uslu I. (2016). Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results in Physics 6 :180-185.