Synthesis of ZnS/ZnO Core-shell Nanostructures on Kevlar® Fiber

Synthesis of ZnS/ZnO Core-shell Nanostructures on Kevlar® Fiber

Jiun-Jr Wang
Wei-Chih Weng
Jo Lun Chiu
Yan Yu Chen
Chen Haw Su
Yu Sheng Tsai
Hsiang Chen*

Applied Materials and Optoelectronic Engineering, National Chi Nan University, Taiwan, ROC

School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
187-191
|
DOI: 
https://doi.org/10.14447/jnmes.v21i3.a09
Received: 
January 6, 2018
| |
Accepted: 
March 20, 2018
| | Citation
Abstract: 

ZnS/ZnO core-shell structures were synthesized on the Kevlar® fiber by the hydrothermal method. OD 600 antibacterial and material property tests revealed that 10 mins of ZnS sulfurization yielded optimal properties for ZnS/ZnO core-shell structures.

Keywords: 

Kevlar® fiber, ZnO, ZnS, antibacterial, core-shell structure

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] F. Fleischhaker, V. Wloka and I. Hennig, Journal of Materials Chemistry, 20, 6622 (2010).

[2] P. Struk, T. Pustelny and Z. Opilski, Acta Physica PolonicaSeries A General Physics, 118, 1239 (2010).

[3] C.-Y. Tsay, K.-S. Fan, S.-H. Chen and C.-H. Tsai, Journal of Alloys and Compounds, 495, 126 (2010).

[4] A. Mclaren, T. Valdes-Solis, G. Li and S. C. Tsang, Journal of the American Chemical Society, 131, 12540 (2009).

[5] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu,Scientific reports, 4 (2014).

[6] M. El-Kemary, H. El-Shamy and I. El-Mehasseb, Journal of Luminescence, 130, 2327 (2010).

[7] F. L. Tzec, M. A. Frutis, G. R. Gattorno and G. Oskam, Journal of New Materials for Electrochemical Systems, 16, 209 (2013).

[8] A. K. Zak, M. E. Abrishami, W. A. Majid, R. Yousefi and S.Hosseini, Ceramics International, 37, 393 (2011).

[9] M. Rahman, A. Umar, L. Roza, S. Samsuri, M. Salleh, I. Iwantono and T. Tugirin, Journal of New Materials for Electrochem ical Systems, 18, 213 (2015).

[10] L. Xu, X. Li, Y. Chen and F. Xu, Applied Surface Science, 257, 4031 (2011).

[11] Q. Yang, W. Wang, S. Xu and Z. L. Wang, Nano letters, 11, 4012 (2011).

[12] B. Kumar and S.-W. Kim, Nano Energy, 1, 342 (2012).

[13] N. Talebian, S. M. Amininezhad and M. Doudi, Journal of Photochemistry and Photobiology B: Biology, 120, 66 (2013).

[14]Y.-C. Shyu, T. S. Chieh, W. M. Su, C.-C. Lu, C.-Y. Weng, L. Y.Shan, H. C. Hao, J.-J. Lin, C. F. Lin and C.-T. R. Yu, Journal of New Materials for Electrochemical Systems, 19, 229 (2017).

[15] K. R. Raghupathi, R. T. Koodali and A. C. Manna, Langmuir, 27, 4020 (2011).

[16]Y. Xie, Y. He, P. L. Irwin, T. Jin and X. Shi, Applied and environmental microbiology, 77, 2325 (2011).

[17] K. Tiwary, S. K. Choubey and K. Sharma, Chalcogenide Letters, 10, 319 (2013).

[18]F. Haque, K. Rahman, M. Islam, M. Rashid, M. Akhtaruzzaman, M.Alam, Z. Alothman, K. Sopian and N. Amin, Chalcogenide Letters, 11, 189 (2014).

[19]D. H. Hwang, J. H. Ahn, K. N. Hui, K. San Hui and Y. G. Son, Nanoscale research letters, 7, 26 (2012). [20]A. GADALLA, M. A. EL-SADEK and R. HAMOOD, Chalcogenide Letters, 14 (2017).

[21] N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K.Rezaee and M. Z. Hussein, Chalcogenide Letters, 9 (2012).

[22] T. Serrano, J. Cavazos, Y. Peña and I. Gómez, Chalcogenide Letters, 11, 21 (2014).

[23] T. YU, K. WANG, Y. CHEN, M. SHEU and H. CHEN, Chalcogenide Letters, 14 (2017).

[24] H. X. Sang, X. T. Wang, C. C. Fan and F. Wang, international journal of hydrogen energy, 37, 1348 (2012).

[25] K. Wang, J. Chen, Z. Zeng, J. Tarr, W. Zhou, Y. Zhang, Y. Yan, C. Jiang, J. Pern and A. Mascarenhas, Applied Physics Letters, 96, 123105 (2010).

[26] S. Tarish, Z. Wang, A. Al-Haddad, C. Wang, A. Ispas, H. Romanus, P. Schaaf and Y. Lei, The Journal of Physical Chemistry C, 119, 1575 (2015).

[27] Y.-M. Sung, K. Noh, W.-C. Kwak and T. G. Kim, Sensors and Actuators B: Chemical, 161, 453 (2012).

[28] S. Baruah and J. Dutta, Science and Technology of Advanced Materials, 10, 013001 (2009).

[29] T.-Y. Yu, Y. C. Chen, W. T. Chiu, Y. Luo, S. S. Wang, H. Chen, H. Y. Shin, M. H. Lin, K. Y. Wang and Y. Y. He, Journal of New Materials for Electrochemical Systems, 19, 181 (2016).

[30] J. Xie, H. Wang, M. Duan and L. Zhang, Applied surface science, 257, 6358 (2011).

[31] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung, Nano letters, 11, 666 (2011).

[32]Y. Tao, M. Fu, A. Zhao, D. He and Y. Wang, Journal of Alloys and compounds, 489, 99 (2010).

[33] H. Chen, W. M. Su, Y.-T. Chen, C.-C. Lu and C.-Y. Weng, Journal of New Materials for Electrochemical Systems, 20, 049 (2017).

[34] M. Su, A. Gu, G. Liang and L. Yuan, Applied Surface Science, 257, 3158 (2011).

[35] Y. Park, Y. Kim, A. H. Baluch and C.-G. Kim, International Journal of Impact Engineering, 72, 67 (2014).

[36] J. Lim, J. Q. Zheng, K. Masters and W. W. Chen, International Journal of Impact Engineering, 38, 219 (2011).

[37] T.-T. Li, R. Wang, C.-W. Lou and J.-H. Lin, Composites Part B:Engineering, 59, 60 (2014).

[38] J. Lim, W. W. Chen and J. Q. Zheng, Polymer Testing, 29, 701 (2010).

[39] A. Majumdar, B. S. Butola and A. Srivastava, Materials & Design, 51, 148 (2013). [40]A. Hazarika, B. K. Deka, D. Kim, K. Kong, Y.-B. Park and H. W.Park, Composites PartA: Applied Science and Manufacturing, 78, 284 (2015).

[41] H.-S. Hwang, M. H. Malakooti, B. A. Patterson and H. A. Sodano, Composites Science and Technology, 107, 75 (2015).

[42] H.-S. Hwang, M. H. Malakooti and H. A. Sodano, Composites Part A: Applied Science and Manufacturing, 76, 326 (2015).

[43] J. Liu, W. Wu, S. Bai and Y. Qin, ACS applied materials & interfaces, 3, 4197 (2011).

[44 ]M. H. Malakooti, B. A. Patterson, H.-S. Hwang and H. A. Sodano, Energy & Environmental Science, 9, 634 (2016). [45]H. Kong, C. Teng, X. Liu, J. Zhou, H. Zhong, Y. Zhang, K. Han and M. Yu, RSC Advances, 4, 20599 (2014)