Analysis of Redox Reactions on Pt-Sn based Nano-catalysts for Direct Methanol Fuel Cell Applications

Analysis of Redox Reactions on Pt-Sn based Nano-catalysts for Direct Methanol Fuel Cell Applications

A. Sandoval-González S. A. Gamboa*

Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico.

Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco s/n, Centro, 62580, Temixco, Morelos, México.

Corresponding Author Email: 
sags@ier.unam.mx
Page: 
21-28
|
DOI: 
https://doi.org/10.14447/jnmes.v21i1.517
Received: 
6 October 2017
| |
Accepted: 
28 January 2018
| | Citation
Abstract: 

Low content Pt based catalysts (Pt-Mx, Mx: SnO2, Sn) were prepared by microwave assisted-thermal synthesis. Pt-SnO2/C catalyst showed good performance for methanol oxidation reaction. Besides, Pt1Sn1/C showed good performance for catalyzing the oxygen reduction reaction. The catalysts were characterized structurally by X-ray diffraction and transmission electron microscopy techniques. It was possible to observe the presence of nanoparticles obtained by the synthesis method used in this work. The chemical composition of every material was determined by energy dispersive spectroscopy analysis. The electrochemical characterization of the electrocatalytic materials was carried out in acid medium by cyclic voltammetry and rotating disk electrode techniques. Pt-SnO2/C and Pt1Sn1/C were com-pared with commercial PtRu/C and Pt/C catalysts respectively. Pt-SnO2/C showed better electrochemical characteristics than commercial PtRu/C for performing the methanol oxidation reaction (MOR). Pt1Sn1/C showed an exchange current density two orders of magnitude higher than commercial Pt/C for performing the oxygen reduction reaction (ORR). The materials were evaluated in an experimental direct methanol fuel cell (DMFC) operating during 10 hours. The electric power density loss showed by the DMFC made with commercial cata-lysts (PtRu/C and Pt/C) was 67% while the DMFC made with Pt-SnO2/C and Pt1Sn1/C showed an electric power loss ca. 16%. It means that the catalysts synthesized in this work can be considered as good candidates for experimental direct methanol fuel cells.

Keywords: 

Catalysts, methanol oxidation, oxygen reduction, Pt-SnO2/C, Pt1Sn1/C, Direct methanol fuel cell

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgments

Authors want to thank Dr. Francisco Paraguay-Delgado from CIMAV-Mexico for his support for the samples characterization by HRTEM. Authors are also grateful to thank CONACYT Grants 128545, DGAPA PAPIIT IN111011 and IN112217 to support this project.

  References

[1] Badwal, S. P. S., Giddey, S., Kulkarni, A., Goel, J., Basu, S. Appl. Energy, 145, 80 (2015).

[2] Taufany, F. Pan C, Lai F, Chou H, Subramanyam Sarma L., Rick J., Lin J, Lee J., Tang M., Hwang B., Chem. -A Eur. J. 19, 905 (2013).

[3] Y. Fan, J. Liu, H. Lu, P. Huang, D. Xu, Electrochim. Acta, 76, 475 (2012).

[4] Chen G., Du L., Du C., Kong F., Sun Y., Qian Z., Yin G., Gao Y., Electrochemistry, 85, 2016 (2017).

[5] Zheng Y., Zhan H., Fang Y., Zeng J., Liu H., Yang J., Liao S., J. Mater. Sci., 52, 3457 (2017).

[6] Ju H. K., Giddey S., Badwal S. P. S., Electrochim. Acta, 229, 39 (2017).

[7] Sethu S. P., Gangadharan S., Chan S. H., Stimming U., J. Power Sources, 254, 161 (2014).

[8] S.G. Ramos, A. Calafiore, A.R. Bonesi, W.E. Triaca, A.M. Castro Luna, M.S. Moreno, G. Zampieri, S. Bengio, Int. J. Hydrogen Energy, 37, 14849 (2012).

[9] Yousaf A. Bin, Imran M., Kasak P., Sifani Zavahir F., Javaid Zaidi S., Fernandez C., Catal. Sci. Technol., 7, 3283 (2017).

[10] Lu S., S Eid, K. Ge, D. Guo, J. Wang, L. Wang, H. Gu, Nanoscale, 1033 (2016).

[11] G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, S.A.S. Machado, Mater. Chem. Phys., 117, 434 (2009).

[12] E. Higuchi, K. Miyata, T. Takase, H. Inoue, J. Power Sources, 196, 1730 (2011).

[13] A. Oliveira Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, J. Power Sources, 166, 87 (2007).

[14] D.J. Guo, J.M. You, J. Power Sources, 198, 127 (2012).

[15] D.H. Lim, D.H. Choi, W.D. Lee, H.I. Lee, App. Catal., B., 89, 484 (2009).

[16] H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, J. Colloid Interface Sci., 319, 193 (2008).

[17] H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J. Power Sources, 196, 4499 (2011).

[18] J. Xu, G. Liu, J. Li, X. Wang, Electrochim. Acta, 59, 105 (2012).

[19] X. Cui, F. Cui, Q. He, L. Guo, M. Ruan, J. Shi, Fuel., 89, 372 (2010).

[20] Y. Lin, S. Zhang, S. Yan, G. Liu, Electrochim. Acta, 66, 1 (2012).

[21] A. Sandoval-González, E. Borja-Arco, Jaime Escalante, O. Jiménez-Sandoval, S.A. Gamboa, Int. J. Hydrogen Energy, 37, 1752 (2012).

[22] G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B., 108, 19960 (2004).

[23] M. Lefévre, J.-P. Dodelet, Electrochim. Acta, 48, 2749 (2003).

[24] D.H. Jung, S.J. Bae, S.J. Kim, K.S. Nahm, P. Kim, Int. J. Hydrogen Energy, 36, 9115 (2011).

[25] C. Jeyabharathi, P. Venkateshkumar, J. Mathiyarasu, K.L.N. Phani, Electrochim. Acta, 54, 448 (2008).

[26] M. Sakthivel, A. Schlange, U. Kunz, T. Turek, J. Power Sources, 195, 7083 (2010).

[27] C.O. Kappe, D. Dallinger, S.S. Murphree, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments and Protocols, Wiley-VCH Capitulo 2, 2009.

[28] E. Antolini, T. Lopes, E.R. Gonzalez, J. Alloys Compd., 461, 253 (2008).

[29] W. Vogel, J. Phys. Chem. C., 112, 13475 (2008).

[30] J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, Electrochim. Acta, 51, 754 (2005).

[31] F. Colmati, W.H. Lizcano-Valbuena, G.A. Camara, E.A. Ticianelli, E.R. Gonzalez, J. Braz, Chem. Soc., 13, 474 (2002).

[32] P. Selvam, B. Kuppan, Catal. Today, 198 85 (2012).

[33] H.X. Huang, S.X. Chen, C. Yuan, J. Power Sources, 175, 166 (2008).

[34] L. Calvillo, M. Gamgeri, S. Perathoner, G. Centi, R. Moliner, M.J. Lázaro, Int. J. Hydrogen Energy, 36, 9805 (2011).

[35] A. Uzun, V. Ortalan, Y. Hao, N.D. Browning, B.C. Gates, ACS Nano., 3, 3691 (2009).

[36] J. Liu, J. Electron Mycroscopy, 54, 251 (2005).

[37] J. Mann, N. Yao, A.B. Bocarsly, Langmuir, 22, 10432 (2006).

[38] B. Thoben, A. Siebke, J. New Mat. Electrochem. Systems, 7, 13 (2004).

[39] Y. Feng, L. Jingjing, W. Tongtao, L. Yun, W. Haojie, L. Jianling, J. Phys. Chem. C., 112, 12894 (2008).

[40] Z. Liu, B. Guo, L. Hong, T. Han Lim, Electrochem. Commun., 8, 83 (2006).

[41] D. Chen, L. Gao, Chem. Phys. Lett., 398, 201 (2004).

[42] J.C. Slater, J. Chem. Phys., 41, 3199 (1964).

[43] F. Colmati, W.H. Lizcano-Valbuena, G.A. Camara, E.A. Ticianelli, E.R. Gonzalez, J. Braz. Chem. Soc., 13, 474 (2002).

[44] W.C. Chang, M.T. Nguyen, J. Power Sources, 196, 5811 (2011).

[45] S. Treimer, A. Tanga, D.C. Johnson, Electroanalysis, 14(3), 165 (2002).

[46] A.J. Bard, R. Parsons, J. Jordan. Standard potentials in aqueous solution (prepared under the auspices of the International Union of Pure and Applied Chemistry), Marcel Dekker, New York, 1985.

[47] A.J. Bard, L. Faulkner. Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.

[48] F. Ye, J. Li, T. Wang, Y. Liu, H. Wei, J. Li, X. Wang, J. Phys. Chem. C, 112, 12894 (2008).