Design and Development of a Real-time Characterization System for Energy Conversion Devices

Design and Development of a Real-time Characterization System for Energy Conversion Devices

J. Riquelme A. P. J. Sebastian* S. A. Gamboa J. Campos

Instituto de Energas Renovables- UNAM, Temixco, Morelos 62580, México

Instituto Tecnológico de Zacatepec-TECNAMEX, Zacatepec, Morelos 62780, Mexico

Corresponding Author Email: 
sjp@ier.unam.mx
Page: 
7-13
|
DOI: 
https://doi.org/10.14447/jnmes.v21i1.515
Received: 
October 02, 2017
|
Accepted: 
December 25, 2017
|
Published: 
April 16, 2018
| Citation
Abstract: 

In this communication it is presented an electronic system for acquiring data from experimental energy conversion devices such as solar cells and fuel cells for micro-electronic applications. The electronic system consists of a software installed in a personal computer and an electronic circuit coupled to a four-wire terminal where the electrical variables like voltage and current can be measured from experimental cells. The software contains a feedback control system for allowing the maximum power transfer from the energy conversion device to the electrical load. It is possible to record and plot the obtained data in real time for a dynamic analysis of the experimental devices at transient or stable state conditions. It is a portable and low-cost device useful for educational and research purposes.

Keywords: 

Data acquisition system, energy conversion device, I-V curve tracer, E-I curve tracer

1. Introduction
2. Design of the Electronic System
3. Results
4. Conclusions
5. Acknowledgments

This work was supported by grants from CONACYT 236978 and DGAPA-UNAM IN106516.

  References

[1] Making I-V and C-V measurements on solar/photovoltaic cells using the model 4200-SCS. Keithley, Application Note Series, Number 2876, (2007), Printed in the U.S.A.

[2] S.P. Lacour, H. Prahlad, R. Pelrine, S. Wagner, Sensors and Actuators A, 111, 288, (2004).

[3] J.Ch. Wang, J.Ch. Shieh, Y.L. Su, K.Ch. Kuo, Y.W. Chang, Y.T. Liang, J.J. Chou, K.Ch. Liao, J.A. Jiang, Energy, 36, 5968, (2011).

[4] M. Averbukh, S. Lineykin, A. Kuperman, Prog. Photovoltaic Res. Appl., 21, 1016 (2013).

[5] D.M. Tobnaghi, R. Madatov, D. Naderi, International Journal of Advanced Research in Electrical, Electronic and Instrumen-tation Engineering, 2, 6404 (2013).

[6] A.A. Abd El Monem, A.M. Azmy, S.A. Mahmoud, J. Pet. En-viron. Biotechnol., 5:169, 1 (2014).

[7] J. E. Flores Mena, Internet Electronic Journal Nanociencia et moletrónica, 8, (2010).

[8] L. De Bernardez, R.H. Buitrago, M. Battioni, M. Cutrera, G. Risso, B. Gottlieb, Avances en Energías renovables y medio ambiente, 8, (2004).

[9] Tatiana Vargas, Augusta Abrahamse, Investigación y Desarrol-lo, 1, 100 (2014).

[10] Arno Krenzinger, aparato para medir curvas características de módulos fotovoltaicos con radiación natural, Laboratorio de Energía Solar, Universidade Federal del Rio Grande del Sul.

[11] José Bosh, Manuel Carmona, Instrumentación Electrónica Avanzada, Instrumentación inteligente. Departamento de Elec-trónica Universidad de Barcelona, (2012).

[12] Yingying Kuai, S. Yuvarajan, Journal of Power Sources, 154, 308 (2006).

[13] Anwar Sahbel, Naggar Hassan, Magdy M. Addelhameed, Ab-delhalim Zekry, Energy Procedia, 36, 223 (2013).

[14] J. E. Flores-Mena, L.A. Juárez Moran, J. Díaz Reyes, H. Coy-otecatl Azucena, Internet Electronic Journal Nanociencia et Moletrónica, D8, 1571, (2010).

[15] Alfonso Grande Ruiz, Francisco Javier Pino Lucena, Análisis experimental del funcionamiento de una celda de combustible de metanol directo en diferentes condiciones operativas, Dept. Termotecnia Escuela Técnica Superior de Ingeniería Universi-dad de Sevilla, Sevilla, (2014).

[16] Wilton Agila Gálvez, Domingo Guinea Díaz, María C. García-Alegre Sánchez, Carlos Balaguer Bernaldo de Quirós, Detec-ción y control del estado de una pila pem para funcionamiento óptimo: Arquitectura de agentes de percepción y control, Uni-versidad Carlos III de Madrid, (2013).