Analysing carbon deposition on Ni/YSZ anode tested in an Solid Oxide Fuel Cell (SOFC)

Analysing carbon deposition on Ni/YSZ anode tested in an Solid Oxide Fuel Cell (SOFC)

G. Almutairi Y. Alyousef F. Alenazey

Water and Energy Research Institute, King Abdulaziz City for Science and Technology (KACST) PO. Box. 6086, Riyadh 11442, Saudi Arabia

Corresponding Author Email: 
gmotari@kacst.edu.sa
Page: 
129-133
|
DOI: 
https://doi.org/10.14447/jnmes.v20i3.315
Received: 
12 June 2017
|
Accepted: 
19 July 2017
|
Published: 
28 July 2017
| Citation
Abstract: 

Integrated Planar Solid Oxide Fuel Cells (IP-SOFC), which utilise a Ni/YSZ based anode, have been operated under direct hydrogen-methane mixture fuel injection at 900 oC. This process has shown some disadvantages in fuelling to the IP-SOFC; producing carbon deposition from the methane in the fuel mixture, causing direct structural damage to the IP-SOFC surface and blocking the area of activation for reaction processes and reducing the performances. These factors were shown to adversely affect the performance of the IP-SOFC over time. The aim of this paper is to calculate the amount of carbon deposited through the use of temperature programmed oxidation (TPO). In addition, the distribution of carbon is studied and analysed on all parts of the IP-SOFC cells. The results show that both amorphous and graphitic carbon were formed causing microstructural damage thereby reducing the cell performance. Furthermore, the reaction temperature was demonstrated to increase the total amount of carbon deposition.

Keywords: 

IP-SOFC, degradation, carbon deposition, temperature programmed oxidation

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] T. Komatsu, K. Watanabe, M. Arakawa, H. Arai., Journal of Power Sources, 193, 585 (2009).

[2] K. Kevin, Q. Nguyen, C. S. Singhal, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Cell Stack and Designs, Elsevier Ltd., Oxford 2003, pp. 197–228.

[3] C. Sun, U. Stimming, Journal of Power Sources, 171, 247 (2007).

[4] F. N. Cayan, M. Zhi, S. R. Pakalapati, I. Celik, N. Wu, R. Gemmen , Journal of Power Sources, 185, 595 (2008).

[5] T. S. Li, H. Miao, T. Chen, W. G. Wang, C. Xuz, Journal of The Electrochemical Society, 156, B1383 (2009).

[6] T. Chen, W. G. Wang, H. Miao, T. Li, C. Xu, Journal of Power Sources, 196, 2461 (2011).

[7] Y. Lin, Z. Zhan, J. Liu, S. A. Barnett, Solid State Ionics, 176, 1827 (2005).

[8] J. Liu, S.A. Barnett, Solid State Ionics, 158, 11 (2003).

[9] A. Gunji, C. Wen, J. Otomo, T. Kobayashi, K. Ukai, Y. Mizutani, H. Takahash, Journal of Power Sources, 131, 285 (2004).

[10]P Vernoux, M Guillodo, J Fouletier, A Hammou, Solid State Ionics, 135, 425 (2000).

[11]J. Canales-Vazquez, S.W Tao, J.T.S Irvine, Solid State Ionics, 159, 159 (2003).

[12]S. Hui, A. Petric, Journal of The Electrochemical Society, 149, J1 (2002).

[13]S. Park, J.M. Vohs, R.J. Gorte, Nature, 404, 265 (2000).

[14]D. Singh, E. Hernandez-Pacheco, P. N. Hutton, N. Patel, M. D. Mann, Journal of Power Sources, 142, 194 (2005).

[15]C.J. Laycock, J.Z. Staniforth, R.M. Ormerod, Dalton Transactions, 40, 5494 (2011).

[16]A. Dhir, K. Kendall, Journal of Power Sources, 181, 297 (2008).

[17]G. Almutairi, A. Dhir,W. Bujalski, Fuel Cells, 2014, in press.

[18]C. M Finnerty, N. J Coe, R. H Cunningham, R. M. Ormerod, Catalysis Today, 46, 137 (1998).

[19]F.J Gardner, M.J Day, N.P Brandon, M.N Pashley, M Cassidy, Journal of Power Sources, 86, 122 (2000).

[20]A. Spangler, G. Agnew, 9th Grove Fuel Cell Symposium. 2005: London, UK.

[21]G. Almutairi, K. Kendall and W. Bujalsk, Cycling durability studies of IP-SOFC, International Journal of Low-Carbon Technologies, 7, 63 (2012).

[22]C. Mallon, in Chemical Engineering. 2006, The University of Birmingham: Birmingham.