Voltammetric Determination of Copper and Zinc in Water Using a Ruthenium Bipyridyl/Nafion-Modified Indium Tin Oxide-Coated Glass Electrode

Voltammetric Determination of Copper and Zinc in Water Using a Ruthenium Bipyridyl/Nafion-Modified Indium Tin Oxide-Coated Glass Electrode

Shirley Tiong Palisoc Michelle Tiamzon Natividad Craig Egan Allistair Dumanon Tan

Condensed Matter Research Unit, Center for Natural Science and Environmental Research, College of Science, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines

Condensed Matter Laboratory, Physics Department, De La Salle University, 2401 Taft Ave., Manila, Philippines

Page: 
89-93
|
DOI: 
https://doi.org/10.14447/jnmes.v20i3.261
Received: 
23 November 2016
|
Accepted: 
25 June 2017
|
Published: 
29 June 2017
| Citation
Abstract: 

Chemically-modified Indium Tin Oxide (ITO) coated glass substrates were fabricated by depositing Nafion thin films doped with tris (2,2’-bipyridyl) ruthenium(II) dichloride hexahydrate via drop coating deposition technique. The Nafion volume concentration in the film is 1% (v/v) and the mediator concentration is 5 mg per 1 mL Nafion. The chemically-modified electrodes were characterized by cyclic voltammetry (CV) and were used as working electrodes to detect varying concentrations of copper (Cu2+) and zinc (Zn2+) in a 0.1 M NaCl supporting electrolyte solution via Anodic Stripping Voltammetry (ASV). Cu2+ and Zn2+ ions were successfully determined by ASV. The limits of detection for Cu2+ and Zn2+ were 0.1 ppm and 0.7 ppm, respectively. The modified electrodes were used to determine the presence of Cu2+ and Zn2+ in different real water samples. The presence of Cu2+ was successfully determined in deep well, lake, and tap water samples, while the presence of Zn2+ was successfully determined in sea and tap water samples. Atomic Absorption Spectroscopy (AAS) results confirm the presence of Cu2+ and Zn2+ in the samples.

Keywords: 

nafion, ruthenium bipyridyl, indium tin oxide, anodic stripping voltammetry, copper, zinc

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments
  References

[1] M. Wilhelm, B. Heinzow, J. Angerer, C. Schulz, Int. Jour. of Hyg. and Env. Hea., 213, 265 (2010).

[2] H.J. Sun, B. Rathinasabapathi, B. Wu, J. Luo, L.P. Pu, Env. Int., 69, 148 (2014).

[3] L.M. Gaetke, C.K. Chow, Tox., 189, 147 (2003).

[4] World Health Organization, Copper in Drinking Water, Retrieved January 25, 2015 from http://www.who.int/water_

sanitation_health/dwq/chemicals/copper.pdf.

[5] K. Dzieżyc, T. Litwin, G. Chabik, A. Członkowska, Gait & Posture, 42, 601 (2015).

[6] G. Kovacs, N. Montalbetti, M.C. Franz, S. Graeter, A. Simonin, M.A. Hediger, Cell Cal., 54, 276 (2013).

[7] World Health Organization. Zinc in Drinking Water. Retrieved April 7, 2015 from http://www.who.int/water_sanitation_health

/dwq/chemicals/zinc.pdf?ua=1.

[8] J. Lee, Y.S. Yim, S.J. Ko, D.G. Kim, C.H. Kim, Bra. Res. Bull., 86, 314 (2011).

[9] B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana-Filho, R.C. Faria, O. Fatibello-Filho, Sens. and Act. B, 142, 260 (2009).

[10]L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao, Elec. Act., 115, 471 (2014).

[11]S. Legeai, O. Vittori, Anal. Chim. Act., 560, 184 (2006).

[12]F. Torma, M. Kádár, K. Tóth, E. Tatár, Anal. Chim. Act., 619, 173 (2008).

[13]Y. Song, G.M. Swain, Anal. Chim. Act., 593, 7 (2007).

[14]B. Kong, B. Tang, X. Liu, X. Zeng, H. Duan, S. Luo, W. Wei, Jour. of Haz. Mat., 167, 455 (2009).

[15]P. Sonthalia, E. McGaw, Y. Show, G.M. Swain, Talanta, 64, 562 (2004).

[16]A. Giacomino, O. Abollino, M. Lazzara, M. Malandrino, E. Mentasti, Talanta, 83, 1428 (2011).

[17]Q. Duan, H. Wang, J. Benziger, Jour. of Mem. Sci., 392, 88 (2012).

[18]P. Bertencelllo, N.R. Wilson, P.R. Unwin, Soft Matter, 3, 1300 (2007).

[19]S.T. Palisoc, M.T. Natividad, N.M.D.C. Martinez, R.M.A. Ramos, K.A.Y. Kaw, e-Polymers, 16, 117 (2015).

[20]S.T. Palisoc, M.T. Natividad, P.D. DeVera, B.S.B. Tuason, Phil. Sci. Lett., 7, 372 (2014).

[21]S.T. Palisoc, M.T. Natividad, P.D. DeVera, B.S.B. Tuason, J. N. Mat. Electr. Sys., 17, 205 (2014).

[22]S.T. Palisoc, B.S.B. Tuason, M.T. Natividad, Opto. and Adv. Mat. – Rap. Comm., 9, 1435 (2015).

[23]S.T. Palisoc, M.T. Natividad, F. Co, K.A.Y. Kaw, Optoelectron. Adv. Mat., 9, 1010 (2015).

[24]S. Kádár, T. Amemiya, K. Showalter, J. Phys. Chem. A., 101, 8200 (1997).

[25]K.A.Y.Kaw, S.T. Palisoc, M.T. Natividad, Phil. Sci. Lett., 7, 171 (2014).

[26]C. Zhao, L. Xing, J. Xiang, L. Cui, J. Jiao, H. Sai, Z. Li, F. Li, Part., 17, 66 (2014).

[27]Y. Liu, Y. Han, X. Zhao, Y. Tong, Q. Tang, Y. Liu, Syn. Met., 198, 248 (2014).

[28]Skoog, D.A., Holler, F.J., and Nieman, T.A., Principles of instrumental analysis, 5, 13 (1998).