Effect of Milling on the Electrochemical Properties of Nanostructured Li(Fe0.8Mn0.2)PO4 as Cathodes for Li-ion Batteries

Effect of Milling on the Electrochemical Properties of Nanostructured Li(Fe0.8Mn0.2)PO4 as Cathodes for Li-ion Batteries

Morteza Torabi* Alireza Tavakkoli Neyshabouri Bahram Soltan Mohammad S.H. Razavi Mansoor Kianpour Rad

Materials and Energy Research Center, P.O. Box 14155-4777, Tehran, Iran

Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran

Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

Malek-Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran

Corresponding Author Email: 
mtorabi@uwaterloo.ca
Page: 
39-42
|
DOI: 
https://doi.org/10.14447/jnmes.v20i1.293
Received: 
5 February 2016
|
Accepted: 
22 February 2017
|
Published: 
22 April 2017
| Citation
Abstract: 

Phospho-olivine Li(Fe0.8Mn0.2)PO4 was synthesized using high-temperature solid state procedure. Ball milling was used to decrease the particle size of the active material. X-ray diffraction (XRD) confirmed formation of the phospho-olivines. The crystallite size of the ball-milled particles was calculated about 64.9 nm. Scanning electron microscopy (SEM) also showed polygonal particles of the ball-milled Li(Fe0.8Mn0.2)PO4 and homogeneous distribution of the iron and manganese. Electrochemical evaluation of the ball-milled Li(Fe0.8Mn0.2)PO4demonstrated faster kinetic reaction with respect to the as-synthesized Li(Fe0.8Mn0.2)PO4. The ball milling process led to highest capacity between the samples (150 mAh g-1 at 0.1 mA cm-2); however, annealing the ball-milled samples showed the best cyclic performance (3% fading after 50 cycles). Ball milling process caused nanostructured Li(Fe0.8Mn0.2)PO4 with lower diffusion length, higher electrical conductivity and higher capacity.

Keywords: 

phospho-olivines, lithium-ion battery, nanostructures, ball milling

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Elec-trochem. Soc., 144, 1188 (1997).

[2] C.H. Mi, X.G. Zhang, X.B. Zhao, H.L. Li, Mater. Sci. Eng. B, 129, 8 (2006).

[3] S. Chung, J. Bloking, Y. Chiang, Nat. Mater., 2, 123 , (2002).

[4] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J.M. Goupil, S. Pejovnik, J. Jamnik, J. Power Sources, 153, 274 (2006).

[5] S. Yang, P.Y. Zavalij, M.S. Whittingham, Electrochem. Com-mun., 3, 505 (2001).

[6] L. Wang, Y. Huang, R. Jiang, D. Jia, Electrochim. Acta, 52, 6778 (2007).

[7] B. Wang, Y. Qiu, S. Ni, Solid State Ionics, 178, 843 (2007).

[8] M. Zhang, L.F. Jiao, H.T. Yuan, Y.M. Wang, J. Guo, M. Zhao, W. Wang, X.D. Zhou, Solid State Ionics, 177, 3309 (2006).

[9] D. Jugović, D. Uskoković, J. Power Sources, 190, 568 (2009)

[10]M. Talebi-Esfandarani, O. Savadogo, J. Appl. Electrochem., 44, 555 (2014).

[11]J. Triwibowo, E. Yuniarti, E. Suharyadi, AIP Conference Pro-ceedings, 1617, 52 (2014).

[12]Y. Wang, G. Cao, Adv. Mater., 20, 2251, (2008).

[13]A. Yamada, S.C. Chung, J. Electrochem. Soc., 148, A960 (2001).

[14]A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc., 148, A1153 (2001).

[15]G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc., 149, A743 (2002).

[16]K. T. Lee, K. S. Lee, J. Power Sources, 189, 435 (2009).

[17]M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Com-mun., 9, 2778 (2207).

[18]B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, London, 1978.

[19]C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, C. Masquelier, J Electrochem. Soc., 152, A913 (2005).

[20]M. R. Roberts, G. Vitins, G. Denuault, J. R. Owena, J. Electro-chem. Soc., 157, A381 (2010).

[21]J. Molenda, W. Ojczyk, J. Marzec, J. Power Sources, 174, 689 (2007).

[22]Y. Wang, D. Zhang, X. Yu, R. Cai, Z. Shao, X. Liao, Z. Ma, J Alloys Comp., 492, 675 (2010).

[23]K. T. Lee, K. S. Lee, J. Power Sources, 189, 435 (2009).