A Green and Efficient Michael Addition of Indoles to α, β-unsaturated Electron-deficient Compounds and Synthesis of Bis-indolylmethanes Catalyzed by Gallium Dodecyl Sulfate [Ga(DS)3] in Water

A Green and Efficient Michael Addition of Indoles to α, β-unsaturated Electron-deficient Compounds and Synthesis of Bis-indolylmethanes Catalyzed by Gallium Dodecyl Sulfate [Ga(DS)3] in Water

Jing Jiang* Yuan Cai* Lixin Tang

Department of Mechanical and Electrical Engineering, TONGLING POLYTECHNIC, Tongling 244000, P.R. China

Jiangsu Research and Development Center of Chemical Engineering Applying Technology, Department of Chemical Engineering, Nanjing Polytechnic Institute, Nanjing 210048, P.R. China

College of Chemical Engineering and State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China

Corresponding Author Email: 
jiangjing19661004@163.com; yuancai@njtech.edu.cn
Page: 
31-37
|
DOI: 
https://doi.org/10.14447/jnmes.v20i1.292
Received: 
4 November 2016
|
Accepted: 
10 February 2017
|
Published: 
20 April 2017
| Citation
Abstract: 

α, β-unsaturated electron-deficient compounds and bis-indolylmethanes were successfully synthesized by gallium dodecyl sul-fate (Ga(DS)3) catalyzed Michael addition using indoles and α, β-unsaturated ketones(or aldehyde) as reactant, respectively. The samples were characterized by 1H NMR (400 MHz), HRMS, and Electrothermal Digital Melting-point. The results showed that the α, β-unsaturated electron-deficient compounds and bis-indolylmethanes could be effectively catalyzed by using Ga(DS)3 to give the corresponding adducts in good to excellent yields in water media.

Keywords: 

indoles, michael addition, α, β-unsaturated ketones, Ga(DS)3

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] S.O. Bachurin, V.B. Sokolov, A.Yu. Aksinenko, T.A. Epishina, T.V. Goreva, Russ. Chem. B+, 64, 1354 (2015).

[2] S.R. Anand, K. Vijayakumar, Y. Manjunatha, V.A. Verma, P. Walmik, Indian J. Heterocy. Ch., 20, 321 (2011).

[3] L.B. Ye, J. Wu, J. B. Yang, W. Q. Chen, Y. Luo, Lat. Am. J. Pharm., 35, 416 (2016).

[4] A.G. Badamshin, L.V. Spirikhin, R.F. Salikov, V.A. Dokichev, Y.V. Tomilov, Mendeleev Commun., 25, 438 (2015).

[5] Y. Cai, Y.L. Li, X.Y. Yang, L.F. Jiang, B. Zhang, Optoelectron. Adv. Mat., 9, 1565 (2015).

[6] K.V. Srinivas, B. Das, Synth., 13, 2091 (2004).

[7] K. Namitharan, K. Pitchumani, Org. Biomol. Chem., 10, 2937 (2012).

[8] Zhou H.C., Li X.L., Liu J.L., Peng C., Zhang B., Chem. Pap., 69, 1361 (2015).

[9] Salminen E., Maki-Arvela P., Virtanen P., Salmi T., Ind. Eng. Chem. Res., 53, 20107 (2014).

[10]Banik B.K., Reddy A.T., Datta A., Mukhopadhyay C., Tetrahe-dron Lett., 48, 7392 (2007).

[11]H.D. Xu, Z.H. Jia, K. Xu, H. Zhou, M.H. Shen, Org. Lett., 17, 66 (2015).

[12]A.S. Paraskar, G.K. Dewkar, A. Sudalai, Tetrahedron Lett., 44, 3305 (2003).

[13]N.Y. Fu, Y.F. Yuan, Z. Cao, S.W. Wang, J.T. Wang, C. Peppe, Tetrahedron., 58, 4801 (2002).

[14]T. Saito, Y. Nishimoto, M. Yasuda, A. Baba, J. Org. Chem., 72, 8588 (2007).

[15]Ch. S. Reddy, A. Nagaraj, Heterocycl. Commun., 13, 67 (2007).

[16]H. Salehi, Q.X. Guo, Synthetic Commun., 34, 171 (2004).

[17]A.S. Suresh, J.S. Sandhu, Synthetic Commun., 38, 3655 (2008).

[18]P.J. Praveen, P.S. Parameswaran, M.S. Majik, Synthesis-Stuttgart., 47, 1827 (2015).

[19]S. Imran, M. Taha, N.H. Ismail, Curr. Med. Chem., 22, 4412 (2015).

[20]H.W. Gong, Z.F. Xie, Chinese J. Org. Chem., 32, 1195 (2012).