Preparation of CuPc/RGO Nanocomposites and Their Electrocatalytic Behaviors for Oxygen Reduction Reaction

Preparation of CuPc/RGO Nanocomposites and Their Electrocatalytic Behaviors for Oxygen Reduction Reaction

Guofang Zuo* Peng Wang Zhifeng Li Jiandong Yang

College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741000, P. R. China

Department of Biology and Chemistry, Longnan Normal College, Chengxian 742500, P. R. China

Corresponding Author Email: 
zogofn@126.com
Page: 
193-198
|
DOI: 
https://doi.org/10.14447/jnmes.v19i4.283
Received: 
18 August 2016
| |
Accepted: 
27 October 2016
| | Citation
Abstract: 

In this paper, copper phthalocyanine/reduced graphene oxide (CuPc/RGO) nanocomposites were synthesized by aromatic π-π stacking interaction and well characterized by scanning electron microscopy (SEM) and fluorescence spectrometry. The composites were modified on the surface of glass carbon electrode (GCE) and their electrochemical behaviors of CuPc/RGO for electrocatalytic oxygen reduction reaction (ORR) were studied by cyclic voltammetry (CV). The study showed when the mass ratio of RGO to CuPc in composite achieved 1:1, the composite film performed excellent electrocatalytic activity towards the ORR.

Keywords: 

copper phthalocyanine (CuPc), reduced graphene oxide (RGO), nanocomposites, modified electrodes, electrocatalytic ORR

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments
  References

[1] M. Armand, J. M. Tarascon, Nature, 451, 652 (2008).

[2] J. Potocnik, Science, 315, 810 (2007).

[3] C. Du, X. H. Gao, W. Chen, Chinese Journal of Catalysis, 37, 1049 (2016).

[4] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 323, 760 (2009).

[5] Y. G. Li, W. Zhou, H. L. Wang, L. M. Xie, Y. Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. J. Dai, Nat. Nanotech-nol, 7, 394 (2012).

[6] M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Science, 324, 71 (2009).

[7] Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nat. Mater., 10, 780 (2011).

[8] T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc., 134, 1519 (2012).

[9] E. C. M. Tse, D. Schilter, D. L. Gray, T. B. Rauchfuss, A. A. Gewirth, Inorg. Chem., 53, 8505 (2014).

[10]M. A. Thorseth, C. S. Letko, E. C. M. Tse, T. B. Rauchfuss, A. A. Gewirth. Inorg Chem. XXX (XXXX) XXX.

[11]K. Iwase, T. Yoshioka, S. Nakanishi, K. Hashimoto, K. Kami-ya, Angew. Chem., 127, 11220 (2015).

[12]H. Koshikawa, S. Nakanishi, K. Hashimoto, K. Kamiya, Elec-trochimica Acta, 180, 173 (2015).

[13]Z. P. Zhang, S. X. Yang, M. L. Dou, H. J. Liu, L. Gu, F. Wang, RSC Adv., 6, 67049 (2016)

[14]M. M. Liu, R. Liu, W. Chen, Biosens Bioelectron, 45, 206 (2013).

[15]S. H. Bergens, M. E. P. Markiewicz. In Encyclopedia of Elec-trochemical Power Sources. J. Garche. Ed. Elsevier: Amster-dam, 2009 616-625.

[16]Z. Jin, D. Nackashi, W. Lu, C. Kittrell, J. M. Tour, Chem. Ma-ter., 22, 5695 (2010).

[17]L. Wu, L.Y. Feng, Biosens Bioelectron, 34, 57 (2012).

[18]Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, Y. S. Chen, Adv. Mater., 21, 1275 (2009).

[19]A. Wojcik , P. V. Kamat, ACS Nano, 4, 6697 (2010).

[20]N. Karousis, A. S. D. Sandanayaka, T. Hasobe, J. Mater. Chem., 21, 109 (2011).

[21]M. B. M. Krishna, N. Venkatramaiah, R. Venkatesan, D. N. Rao, J. Mater. Chem., 22, 3059 (2012).

[22]X. F. Zhang, H. J. Xu, J. Chem. Soc., Faraday Trans, 89, 3347 (1993).

[23]A. W. Snow, Phthalocyanine aggregation. In: K. M. Kadish, K. M. Smith, R. Guilard, editors. The porphyrin handbook. San Diego: Academic Press (2003) 129.

[24]A. K. Geim, P. Kim, Sci. Am., 4, 90 (2008).

[25]S. K. Kim, S. Jeon, Electrochem. Commun., 22, 141 (2012).

[26]L. Q. Jiang, M. Li, L. Lin, Y. F. Li, X. Q. He, L. L. Cui, RSC Adv., 4, 26653 (2014).

[27]J. M. You, H. S. Han, H. K. Lee, S. Cho, S. Jeon, Int. J. Hydro-gen Energy, 39, 4803 (2014).

[28]L. L. Cui, G. J. Lv, X. Q. He, J. Power Sources, 282, 9 (2015).

[29]V. Mani, R. Devasenathipathy, S. M. Chen, J. A. Gu, S. T. Huang, Renew. Energ., 74, 867 (2015).

[30]W. Lu, C. Wang, Q. Lv, X. Zhou, J. Electroanal. Chem., 558 (2003).

[31]R. S. Nicholson, I. Shain, Anal. Chem., 36, 706 (1964).

[32]A. J. Bard, L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, Wiley, New York, 1980 (chapters 3 and 12).

[33]A. Fuerte, A. Cormab, M. Iglesias, E. Morales, F S’anchez, J. Mol. Catal. A-Chem., 246, 109 (2006).