Development of Gold Electrodes for Microbial Fuel Cells

Development of Gold Electrodes for Microbial Fuel Cells

L. Verea M. Jaramillo-Torres M. P. Mejia-Lopez J. Campos P. J. Sebastian*

Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, 29039, Chiapas, Mexico

Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, 62580, Morelos, Mexico

Corresponding Author Email: 
sjp@ier.unam.mx
Page: 
37-42
|
DOI: 
https://doi.org/10.14447/jnmes.v19i1.346
Received: 
22 December 2015
|
Accepted: 
20 January 2016
|
Published: 
29 January 2016
| Citation

OPEN ACCESS

Abstract: 

The microbial fuel cell (MFC) has been an important subject of study in the last decades because of its technological significance that one can produce hydrogen or electricity by wastewater treatment (bio-remediation). One of the main issues for the application of these devices on large scale is the processes and materials for the electrode fabrication. The cathode for MFC requires a catalyst to perform the reduction reaction and this work presents a simple technique to obtain thin layers of gold (TLG) supported on glass. This technique was employed to obtain TLG with different thicknesses from 848 nm to the thinnest of 137 nm. Since the gold of the TLGs presented adherence issues, a successful thermal treatment with different temperatures from 150-300 ºC was developed to avoid the gold detachment. The TLGs were tested as cathodes in a MFC and a maximum Voc of 431 mV and an Isc of 10 × 10−2 mA were obtained. The process to obtain TLGs presented here has probed to be a good option for this application since the thickness obtained and the accessible material (glass) employed as support offers a solution to the costs and the scaling issues.

Keywords: 

gold layer, cathodes, microbial fuel cells

1. Introduction
2. Materials and Methods
3. Microbial Fuel Cell
4. Results and Discussion
5. Conclusions
  References

[1] B.E. Logan. “Microbial Fuel Cells” John Wiley and Sons, New Jersey, 2008.

[2] G. Hoogers. “Fuel Cell Technology Handbook” CRC Press LLC, 2003.

[3] J.G. Zeikus, D.H. Park., Biotechnology Bioengineering, 81, 348, (2003).

[4] U. Schroder, F. Scholz, P. Bogdanoff, F. Zhao, F. Hamisch, I. Henmann, Electrochemistry Communications, 7, 1405 (2005).

[5] K.A. Radyushkina, O.A. Levina, S.I. Andrusyova, V.S. Ba-gotzky, M.R. Tarasevich, Journal Power Sources, 2, 233, (1978).

[6] Y. Yuan, S. Zhou, N. Xub, L. Zhuang, Colloids Surface B: Biointerfaces, 82, 641 (2010).

[7] X. Yuan, H-C. Kong, Y.J. He, Z.F. Ma, Y. Yang, Q. Li, Inter-national Journal of Hydrogen Energy, 39, 16006 (2014).

[8] M. Sun, F. Zhang, Z.H. Tong, G.P. Sheng, Y.Z. Chen, Y. Zhao, Y.P. Chen, S.Y. Zhou, G. Liu, Y.C. Tian, H.Q. Yu, Biosensors and Bioelectronics, 26, 338, (2010).

[9] L. Verea, O. Savadogo, A. Verde, J. Campos, F. Ginez, P.J. Sebastian, International Journal of Hydrogen Energy, 39, 8938, (2014).

[10]H. Liu, B.E. Logan, Environmental Science Technology, 38, 4040, (2004).

[11]D. Bond, D.R. Lovely, Applied Environmental Microbiology, 69, 1548, (2003).

[12]A. Kisner, Y. Ermolenko, G. Shumilova, A. Offenhausser, Y. Mourzina, E. Koposova, X. Liu., Biosensors and Bioelectron-ics, 57, 54, 2014.

[13]S. Cheng, H. Liu, B.E. Logan, Environmental Science Techno-logy, 40, 2426, (2006).

[14]Y. Kim, B.E. Logan, Desalination, 308, 115, (2013).

[15]G. Lifeng, N. Luo, G.H. Miley, Journal of Power Sources, 173, 77, (2007).

[16]A.J. Bard, L.R. Faulkner, “Electrochemical Methods: Funda-mentals and Applications” Wiley, New York, (2001).

[17]Y. Liu, R. Liu, F. Yang, J. Yin, G. Wang, Y. Li, International Journal of Hydrogen Energy, 37, 13611, (2012).