Influence of Copper Concentration on the Structural and Optical Properties of Chemically Deposited CuSbS2 Thin Films

Influence of Copper Concentration on the Structural and Optical Properties of Chemically Deposited CuSbS2 Thin Films

Jebadurai Joy Jeba Vijila Kannusamy Mohanraj* Sethuramachandran Thanikaikarasan* Ganesan Sivakumar Thaiyan Mahalingam Luis Ixtlilco

Department of Physics, Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India

Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152,Tamil Nadu, India

Centre for Instrumentation and Service Laboratory, Department of Physics, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India

Department of Electrical and Computer Engineering, Ajou University, Suwon – 443 749, Republic of Korea

Universidad Politecnica del Estado de Guerrero, Taxco, Guerrero, Mexico

Corresponding Author Email: 
kmohanraj.msu@gmail.com, s_thanikai@rediffmail.com
Page: 
15-19
|
DOI: 
https://doi.org/10.14447/jnmes.v19i1.342
Received: 
17 November 2015
| |
Accepted: 
25 November 2015
| | Citation

OPEN ACCESS

Abstract: 

Thin films of CuSbS2 have been deposited on ultrasonically cleaned glass substrates using a simple chemical bath deposition technique. Prepared films have been characterized using X-ray diffraction, Field Emission Scanning Electron Microscopy and UV-Vis-NIR spectroscopic techniques, respectively. X-ray diffraction analysis revealed that the prepared films possess polycrystalline in nature with orthorhombic CuSbS2 in addition to secondary phase of monoclinic Cu3SbS3 and cubic Cu12Sb4S13 for different copper concentrations. Field Emission Scanning Electron Spectroscopic analysis showed that the prepared films possess spherical shaped grains with irregular shaped clusters. Optical absorption analysis showed that the prepared films possess band gap value in the range between 1.7 and 2.4 eV.

Keywords: 

CuSbS2, chemical bath deposition, field emission scanning electron microscopy

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] S. Ezugwu, F.I. Ezema, P.U.Asogwa, Chalcogenide Letters, 7, 341 (2010).

[2] B.K. Aoife, J.T. Douglas, W.W. Graeme, O.S. David, Physical Chemistry, 15, 15477 (2013).

[3] S.Thiruvenkadam, A. Leo Rajesh, International Journal of Sci-ence and Technological Research, 3, 38 (2014).

[4] Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, Journal of Crys-tal Growth, 223, 399 (2001).

[5] A. Rabhi, M. Kanzari, Chalcogenide Letters, 8, 255 (2011).

[6] I. Popovici, A. Duta, International Journal of Photon Energy, ID.962649 (2012).

[7] C. Garza, S. Shaji, A. Arato, E.P. Tijerina, G.A. Castillo, T.K.D. Roy, B. Krishnan, Solar Energy Materials and Solar Cells, 95, 2001 (2011).

[8] M.D. Jeroh, International Journal of Thin Film Science, 2, 43 (2013).

[9] S.M. Salem, M.B.S. Osman, A.M. Salem, G.B. Sakr, H.M. Hashem, I.M. El Radaf, Journal of Applied Science Research, 9, 3593(2013).

[10]Joint Council for Powder Diffracted System International Cen-tre for Diffraction Data 2003, PDF 44-1417,Pennsylvenia, USA.

[11]Joint Council for Powder Diffracted System International Cen-tre for Diffraction Data 2003, PDF 24-1313,Pennslyvenia,USA.

[12]Joint Council for Powder Diffracted System International Cen-tre for Diffraction Data 2003, PDF 26-1110,Pennslyvenia,USA.

[13]B. Bharathi, S. Thanikaikarasan, Pratap Kollu, P.V. Chandra-sekar, K. Sankaranarayanan, X. Sahaya Shajan, Journal of Ma-terials Science:Materials in Electronics, 24, 5338 (2014)

[14]Sethuramachandran Thanikaikarasan, Chinnapyan Vedhi, Xa-vier Sahaya Shajan, Thaiyan Mahalingam, Solid State Sciences, 15,142 (2013).

[15]S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y. Deak Kim, T. Kim, Vacuum, 83, 1066 (2009).

[16]S.A. Monolache, L. Andronic, A. Duta, A. Enesca, J. Optoelec. Adv. Mater., 9, 1269 (2007).

[17]P.U. Asogwa, The Pacific J. Sci. Technol., 10, 812 (2009).