Ethylenediamine Processed Cu2SnS3 Nano Particles via Mild Solution Route

Ethylenediamine Processed Cu2SnS3 Nano Particles via Mild Solution Route

Paul Nesamony Prathiba Jeya Helan Kannusamy Mohanraj* Sethuramachandran Thanikaikarasan* Thaiyan Mahalingam Ganesan Sivakumar P. J. Sebastian*

Department of Physics, Manonmaniam Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India

Centre for Scientific and Applied Research,School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152,Tamil Nadu, India

Department of Electrical and Computer Engineering, Ajou University, Suwon - 443 749, Republic of Korea

Centre for Instrumentation and Service Laboratory, Department of Physics, Annamalai University, Annamalai Nagar- 608 002, Tamil Nadu, India

Instituto de Energias Renovables- UNAM 62580,Temixco, Morelos,Mexico

Corresponding Author Email:,,
10 November 2015
25 November 2015
25 January 2016
| Citation



Copper tin sulphide nanoparticles have been prepared by solution growth technique at various ethylenediamine concentrations. Prepared samples have been characterized using x-ray diffraction, fourier transform infrared, Raman and scanning electron microscopy techniques. x-ray diffraction results revealed that the prepared samples are nanocrystalline in nature with tetragonal structure. Fourier transform infrared spectroscopy analysis results showed the presence of Cu-O, Sn-O and Sn-S vibrations in the wavenumber range between 450 and 620 cm-1. Vibrational symmetry of prepared samples have been analyzed using Raman spectroscopy. Scanning electron microscopy analysis indicated the formation of flower like nanocrystals for samples prepared at various Ethylenediamine concentrations.


Cu2SnS3, nanoparticles, solvothermal method, ethylenediamine

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
5. Acknowledgment

[1] D. Tiwari, T.K. Chaudhuri, AIP Conference Proceedings, 1349, 1295 (2011).

[2] Q. Chen, D. Ma, International Journal of Photonenergy, 593420, 1 (2013).

[3] C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Applied Physics Letters, 91, 1 (2007).

[4] D.M. Berg, R. Djemour, L. Gutay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin Solid Films, 520, 6291 (2012).

[5] M. Adelifard, M.B. Mohagheghi, H. Eshghi, Physica Scripta, 85, 035603 (2012).

[6] D. Wu, C.R. Knowles, L.Y. Luke, Chang, Mineralogical Magetism, 50, 323 (1986).

[7] S. Dias, M. Banavoth, S.B. Krupanidhi, AIP Conference Proceedings, 1536, 525 (2013).

[8] S. Blob, M. Jansen, Z Naturforsch, 58b, 1075 (2003).

[9] Q. Li, Y. Ding, X. Liu, Y. Qian, Mater. Res. Bull., 36, 2649 (2001).

[10]X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, Journal of Materials Science Technology, 29, 231 (2013).

[11]Y. Xiong, Y. Xie, G. Du, H. Su, Inorganic Chemisty, 41, 2953 (2002).

[12]Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003 PDF.89-4714, Pennsylvenia, USA.

[13]Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003, PDF.72-0617, Pennslyvenia, USA.

[14]J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Japan Journal of Applied Physics, 51, 10NC34 (2012).

[15]D.M. Berg, Djemour, L Gutay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, Applied Physics Letters, 100, 1 (2012).

[16]N.S. Goncalves, J. A. Carvalho, Z. M. Lima, J. M. Sasaki, Material Letters 72, 36 (2012).

[17]T. Petrov, I. Markova-Deneva, O. Chauvet, R. Nikolov, I.J. Denev, Chemical Technology. Metallurgy, 47, 197 (2012).

[18]B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, 46 (2004).

[19]P. Zhao, S. Cheng, Advanced Materails Science and Engineering, 726080, 1 (2013).

[20]K.K. Verma, Seema, S. Chhabra, International Journal of Chemical Sciences, 6, 59 (2008).

[21]Z. Abdullaeva, E. Omurzak, T. Mashimo, Engineering and Technology, 7, 06 (2013).

[22]W.T. Yao, S-H. Yu, Y. Zhou, J. Jiang, Q-S. Wu, L. Zhang, J. Jiang, Journal of Physical Chemistry B, 109, 14011 (2005).

[23]J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yang, H. Song, J. Tang, Front. Optoelectron., 1-3 (2011).

[24]P.A. Fernandes, P.M.P. Salome, A.F. Da Cunha, Journal of Physics D: Applied Physics, 21, 215403 (2010).

[25]A. Mercy, S.R. Selvaraj, M.B. Boaz, A. Anandhi, R. Kangadurai, Indian Journal of Pure Applied Physics, 51, 448 (2013).