Voltammetric Studies of Anthracen-9-ylmethylene-(3,4-dimethyl-isoxazol-5-yl)-amine Compound at Platinium Electrode

Voltammetric Studies of Anthracen-9-ylmethylene-(3,4-dimethyl-isoxazol-5-yl)-amine Compound at Platinium Electrode

A. A. Al-Owais I. S. El-Hallag 

Chemistry Department, Faculty of Science, King Saud University, Saudi Arabia

Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

Page: 
177-181
|
DOI: 
https://doi.org/10.14447/jnmes.v18i3.366
Received: 
18 November 2014
|
Accepted: 
30 June 2015
|
Published: 
9 September 2015
| Citation
Abstract: 

The voltammetric behavior of anthracen-9-ylmethylene-(3,4-dimethyl-isoxazol-5-yl)-amine compound at Platinium electrode has been performed via convolutive cyclic voltammetry and digital simulation techniques using a conventional platinium electrode in 0.1 mol L-1tetrabutylammonium perchlorate (TBAP) in acetonitrile solvent (CH3CN). The compound loss one electron forming radical cation followed by fast chemical step and the radical cation loss another two electrons producing trication which followed by chemical reaction (ECEC). Cyclic voltammetry and convolutive voltammetry were used for determination of the chemical and the electrochemical parameters of the electrode reaction pathway of the investigated compound. The Electrochemical parameters such as α, ks, Eo , D, and kc of the investigated isoxazol derivative were verified via digital simulation technique. Voltammetric studies of the investigated isoxazol derivative compound under consideration was presented and discussed.

Keywords: 

3,4-dimethyl-isoxazol-5-yl)-amine, Voltammetric studies, Platinium electrode, Digital simulation

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

  References

[1] P. Cali, L. Naerum, S. Mukhija and A. Hjelmencrantz, Bioorg, Med. Chem. Letters., 2004, 14, 5997 (2004).

[2] M. Sree Rama Murthy, D. Venkata Rao, E. Venkata Rao, Indian J. Pharma. Sci., 45, 131 (1983).

[3] J. D. Davenport, A. D. Barry, A. F. Elsasser, Ger. Offen. 2,723,688 (C1. A01N9/28), 22 Dec (1977); US Appl. 695,669, 14 Jun (1976); 43 pp; Chem. Abstr., 1978, 88, 132015k B. E. Kumara Swamy et al Der Pharma Chemica, 3, 224 (2011).

[4] D. D. Guy, P. M. Carabates, (Sterling Drug Inc.) U.S. 4, 268,678 (C1. 548-247; C07D261/ 08), 19 May (1981), Appl. 72,134, 04 Sep (1979); 4 pp; Chem. Abstr., 1981, 95, 203923n.

[5] G. Daidone, D. Raffa, B. Maggio, F. Plescia, V. M. C Cutuli, N.G. Mangano, A. Caruso, Arch. Pharm. Pharm. Med. Chem., 50, 332 (1999).

[6] S. Balalaie, A. Sharifi, B. Ahangarian, Indian J. Heterocyclic Chem.,10, 149 (2000).

[7] L. D. Nunno, P. Vitale, A. Scilimati, S. Tacconelli, P. Patrignani, J. Med. Chem., 47, 4881 (2004).

[8] V. H. Bhaskar, P. B. Mohite, J. Optoelectron Adv. Mat., 2, 249 (2010).

[9] M. Sechi, L. Sannia, F. Carta, M. Palomba, R. Dallocchio, A. Dessi, M. Derudas, Z. Zawahir, N. Neamati, Antiviral Chem. Chemother., 16, 41(2005).

[10] B. Frolund, A. T. Jorgensen, L. Tagmose, T. B. Stensbol, H. T. Vestergaard, C. Engblom, U. Kristiansen, C. Sanchez, P. Krogsgaard-Larsen, T. Liljefors, J. Med. Chem., 45, 2454 (2002).

[11] B. L. Deng, M. D. Cullen, Z. Zhou, T.L. Hartman, R. W. Buckheit(jr.) , C. Pannecouque, E. Declescq, P.E. Fanwick, M. ushman, Bioorg. Med. Chem., 14, 2366 (2006).

[12] R.S. Nicholson, I. Shain, Anal. Chem., 37, 1351 (1965).

[13] S.A. El-Daly, I.S. El-Hallag, E.M. Ebeid, M.M. Ghoneim., Chin. J. Chem, 27, 241(2009).

[14] Bowden; W. J.; J. Electrochem. Soc., 129, 124 (1982).

[15] E.H. Wong, R.M. Kabbani, Inorg. Chem.,19 , 451 (1980).

[16] I.S. El-Hallag, M.M. Ghoneim, E. Hammam, Anal. Chim. Acta., 414, 173 (2000).

[17] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.

[18] I.S. El-Hallag, A.M. Hassanien. Collect. Czech. Chem. Commun., 64, 1953 (1999).

[19] I.S. El-Hallag, M.M. Ghoneim, Monatsh. Chem., 130, 525 (1999).

[20] A.R. Seidle, L. Todd. J. Inorg. Chem., 15 , 2838 (1976).

[21] R. Hettrich, M. Kaschke, H. Wadepohl, W. Weinmann, M. Stephan, H. Pritzkow, W. Siebert, I. Hyla-Kryspin, R. Gleiter. Chem. Eur. J., 2, 487 (1996).

[22] J. Bould, J.D. Kennedy, M. Thornton-Pett. J. Chem. Soc. Dalton Trans., 563 (1992).

[23] B. Stibr, J.D Kennedy, E. Drdakova, M. Thornton-Pett. J. Chem. Soc. Dalton. Trans., 2335 (1993).

[24] G. Doetsch, Laplace Transformation, Dover, New York, 1953.

[25] K.B. Oldham, R.A. Osteryoung, J. Electroanal. Chem., 11, 397 (1966).

[26] J. Galvez, Su.M. Park. J. Electroanal. Chem., 235, 71 (1987).

[27] I.S. El-Hallag, Ph.D. Thesis, Tanta University, Egypt, (1991).

[28] H.M. Al-bishri, I.S. El-Hallag, E.H. El-Mossalamy. J. New. Mat. Electrochem. Systems., 14, 51(2011).

[29] A.M. Asiri, S.A. Khan, I.S. El-Hallag. J. New. Mat. Electrochem. Systems., 14, 251 (2011).

[30] I.S. El-Hallag, S.A. ; El-Daly, Bull. Korean Chem. Soc., 31, 989 (2010).