Investigations on Lithium Carbonate-alumina Composite Solid Electrolyte: Morphology and Related Conductivity

Investigations on Lithium Carbonate-alumina Composite Solid Electrolyte: Morphology and Related Conductivity

M. SulaimanA. A. Rahman N. S. Mohamed 

Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Corresponding Author Email: 
mazdidas@um.edu.my
Page: 
137-143
|
DOI: 
https://doi.org/10.14447/jnmes.v18i3.359
Received: 
15 May 2015
|
Accepted: 
25 July 2015
|
Published: 
30 September 2015
| Citation
Abstract: 

Composite solid electrolytes in the system (1-x)Li2CO3-xAl2O3with x = 0.1 – 0.6 mole were prepared via sol-gel technique. The morphology and conductivity of the composite were investigated. Obtained materials were analysed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, Fourier transform infrared spectroscopy and chemical constituents were confirmed by energy dispersive X-ray. The ionic conductivity was measured using AC impedance spectroscopy. SEM studies of cross-section morphology clearly showed lithium carbonate crystals became radial – fluffy shaped particularly at x = 0.1 and 0.6. Morphological analysis showed homogeneous distribution between Li2COand Al2O3particles resulted in formation of amorphous phase of Li2CO3 at Li2CO3 - Al2O3 interface. Traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8 were observed at x = 0.1, 0.2 and x = 0.4. Impedance spectroscopy studies showed that the conductivity is maximal at x = 0.2 and 0.4 - 0.5 with a value equal to ~10-3 Scm-1 with temperatures ranging from 130 - 180 oC.

Keywords: 

alumina composite, lithium carbonate, XRD, DSC, SEM, EDX

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

The authors would like to thank the University of Malaya for granting the Research Grant (RG021/09AFR) to support this work.

  References

[1] J. Maier, Prog. Solid State Chem., 23, 171 (1995).

[2] J.B. Jr Wagner, Proceedings of the 6th International Conference on Solid State Ionics, Germany, 1987.

[3] B. Scrosati, J. Garche, J. Power Sources, 195, 2419 (2010).

[4] M. Tatsumisago, M. Nagao, A. Hayashi, J. Asian Ceramic So-cieties, 1, 17 (2013).

[5] J. Maier, J. Phys. Chem. Solids, 46, 309 (1985).

[6] J. Maier, Solid State Ionics, 75, 139 (1995).

[7] R.C. Agrawal, R.K. Gupta, J. Mater. Sci., 34, 1131 (1999).

[8] N.F. Uvarov, L.I. Brezhneva, E.F. Hairetdinov, Solid State Ionics, 136, 1273 (2000).

[9] N.F. Uvarov, E.F. Hairetdinov, B.B. Bokhonov, N.B. Bratel, Solid State Ionics, 86, 573 (1996).

[10]N. F. Uvarov, J. Solid State Electr., 15, 367 (2011).

[11]S.S. Bhoga, K. Singh, Solid State Ionics, 111, 85 (1998).

[12]M. Sulaiman, A.A. Rahman, N.S. Mohamed, Proceedings in 18th International Conference on Composite Materials, South Korea (2011).

[13]A.Y. Neiman, N.F. Uvarov, N.N. Pestereva, Solid State Ionics, 177, 3361 (2007).

[14]M. Sulaiman, N.A. Dzulkarnain, A.A. Rahman, N.S. Mo-hamed, Solid State Sci., 14, 127 (2012).

[15]R.B. Khomane, A. Agrawal, B.D. Kulkarni, Mater. Lett., 61, 4540 (2007).

[16]S.W. Kwon, S.B. Park, J. Nucl. Mater., 246, 131 (1997).

[17]K. Saito, K. Uchida, M. Tezuka, Solid State Ionics, 53, 791 (1992).

[18]M.A. Valenzuela, L. Téllez, P. Bosch, H. Balmori, Mater. Lett., 47, 252 (2001).

[19]M. Chatterjee, M.K. Naskar, J. Mater. Sci. Lett., 22, 1747 (2003).

[20]F. Oksuzomer, S.N. Koc, I. Boz, M.A. Gurkaynak, Mater. Res. Bull., 39, 71 (2004).

[21]H. Watamura, H. Marukawa, I. Hirasawa, J. Cryst Growth, 373, 111 (2013).

[22]G.V. Lavrova, V.G. Ponomareva, N.F. Uvarov, Solid State Ionics, 136, 1285 (2000).

[23]K. Tadanaga, K. Imai, M. Tatsumisago, T. Minami, J. Electro-chem. Soc., 147, 4061 (2000).

[24]R.M. Biefield, R.T. Johnson, J. Solid State Chem., 29, 393 (1979).

[25]S. Hashimoto, K. Hattori, K. Inoue, A. Nakahashi, S. Honda, Y. Iwamoto, Mater. Res. Bull., 44, 70 (2009).