The Fabrication of Freestanding Heterogeneous Copper-Tin Films with Meniscus Brush Plating Electrodeposition

The Fabrication of Freestanding Heterogeneous Copper-Tin Films with Meniscus Brush Plating Electrodeposition

Kimberly Y. ScottAnna Halajko Glenn G. Amatucci 

Energy Storage Research Group, Department of Materials Science & Engineering, Rutgers University, North Brunswick NJ 08902 USA

Trainee, Nanotechnology for Clean Energy IGERT

Corresponding Author Email: 
kscotty17@gmail.com
Page: 
25-36
|
DOI: 
https://doi.org/10.14447/jnmes.v18i1.386
Received: 
17 September 2014
| |
Accepted: 
18 November 2014
| | Citation

OPEN ACCESS

Abstract: 

A meniscus brush plating electrodeposition technique was utilized in conjunction with a post deposition heat treatment to formulate freestanding copper-tin alloy films for negative electrodes of lithium-ion batteries. The described fabrication technique intertwined the electrode and current collector for improved cell volume utilization and stability. Two designs were examined to establish the best diffusivity to form electrochemically proficient copper-tin alloys. Fabrication was optimized to promote diffusion of copper and tin and to form the desired intermetallic phase of Cu6Sn5. This improved design fabricated films with competitive areal capacities above 1000 mAh/cc and 2.5 mAh/cm2 for the complete electrode and current collector structure.

Keywords: 

lithium alloys, copper-tin alloys, lithium ion batteries, negative electrodes, electrodeposition

1. Introduction
2. Experimental
3. Results and Discussion
4. CU-SN Bilayer Films Incorporated Into Li-ION Cells
5. Conclusions
Acknowledgments

The authors acknowledge the financial support of Defense Ad-vanced Research Projects Agency N66001-10-C-2013 and National Science Foundation Grant No. 0903661 “Nanotechnology for Clean Energy IGERT.” The authors would also like to thank Barry Vanning, John Gural and Nathalie Pereira for their technical assis-tance.

  References

[1] J. Yang, J.-I. Wang, Encyclopedia of Electrochemical Power Sources, 225, (2009).

[2] W.-J. Zhang, Journal of Power Sources, 196, 13 (2011).

[3] W.-J. Zhang, Journal of Power Sources, 196, 877 (2011).

[4] C. Liang, M. Gao, H. Pan, Y. Liu, M. Yan, Journal of Alloys and Compounds, 575, 246 (2013).

[5] K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Journal of Power Sources, 81-82, 383 (1999).

[6] I.A. Courtney, J.R. Dahn, Journal of the Electrochemical Socie-ty, 144, A2045 (1997).

[7] J.S. Thorne, J.R. Dahn, M.N. Obrovac, R.A. Dunlap, Journal of Power Sources, 216, 139 (2012).

[8] D. Larcher, L.Y. Beaulieu, D.D. MacNeil, J.R. Dahn, Journal of the Electrochemical Society, 147, A1658 (2000).

[9] L. Trahey, J.T. Vaughey, H.H. Kung, M.M. Thackeray, Journal of the Electrochemical Society, 156, A385 (2009).

[10] S. Wang, W. Zhao, Y. Wang, X. Liu, L. Li, Electrochimica Acta, 109, 46 (2013).

[11] L. Fransson, E. Nordström, K. Edström, L. Häggström, J.T. Vaughey, M.M. Thackeray, Journal of the Electrochemical Society, 149, A736 (2002).

[12] S.D. Beattie, J.R. Dahn, Journal of the Electrochemical Socie-ty, 150, A894 (2003).

[13] A. Kitada, N. Fukuda, T. Ichii, H. Sugimura, K. Murase, Elec-trochimica Acta, 98, 239 (2013).

[14] R.A. Huggins, Journal of Power Sources, 81-82, 13 (1999).