Preparation and Characterization of SrO/Cu2O for Phorocatalytic Oxidation of Diphenylamine under UV Light

Preparation and Characterization of SrO/Cu2O for Phorocatalytic Oxidation of Diphenylamine under UV Light

P. Senthil Kumar S. Karuthapandian* S. Balakumar S. Thanikaikarasa Peggy Alvarez D. Eapen

Department of Chemistry, VHNSN College, Virudhunagar-626 001, Tamilnadu, India

Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152, Tamil Nadu, India

Universidad Politécnica de Chiapas, Eduardo J. Selvas s/n col. Magisterial s/n CP 29010 Tuxtla Gutiérrez Chiapas, México

Instituto de Biotecnología-UNAM, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico

Corresponding Author Email: 
pandiansk2000@yahoo.com, s_thanikai@rediffmail.com
Page: 
191-195
|
DOI: 
https://doi.org/10.14447/jnmes.v17i3.421
Received: 
March 14, 2014
|
Accepted: 
August 27, 2014
|
Published: 
October 03, 2014
| Citation
Abstract: 

Generally cuprous oxide has higher photocatalytic activity in the visible region. It is widely applicable in the field of dye degradation. SrO/Cu2O nanocomposites were synthesized by sol-gel method and characterized using SEM, EDAX, AFM and particle size analyzer. SEM, EDAX, AFM and particle size analysis studies indicate that SrO/Cu2O composites are in nano-size range. The catalytic efficiency of nanocomposites was compared with commercial mixture of SrO/Cu2O photocatalyzed oxidation of diphenylamine (DPA) using UV light of wavelength 365 nm on SrO/Cu2O nanocomposites and SrO/Cu2O semiconductor mixture surfaces in ethanol yield N-phenyl-pbenzoquinonimine. The photocatalysis was examined as a function of (DPA), airflow rate and intensity of illumination. The photocatalytic studies revealed the sustainable photocatalytic efficiencies. The product formation was high with illumination at 254 nm than at 365 nm. Electron donors like triphenylphosphene, hydroquinone and tetraethylamine do not enhance the photo-oxidation. Both anionic and cationic surfactants favor photocatalysis. Vinyl monomers neither slowdown the photo-oxidation nor undergo polymerization. Singlet oxygen quencher azide ion does not suppress the photo-oxidation. Singlet oxygen generator enhances the photocatalysis. The catalytic efficiencies of nanocomposites were nearly four times higher than that of commercial mixture of SrO/Cu2O.

Keywords: 

Photo-catalysis, SrO/Cu2O, diphenylamine, nanocomposite

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Mater., 11, 3512 (1999).

[2] J.N. Nian, C.C. Hu, H. Teng, Int. J. Hydrogen Energy, 33, 2897 (2008).

[3] A.O. Musa, T. Akomolafe, M.J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998).

[4] P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Commun., 23, 1069 (1999).

[5] C.A.N. Fernando, S.K. Wetthasinghe, Sol. Energy Mater. Sol. Cells, 3, 299 (2000).

[6] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Sol. Energy, 80, 715 (2006).

[7] M. Yang, J.J. Zhu, J. Crystal Growth, 256, 134 (2003).

[8] I. Prakash, P. Muralidharan, N. Nallamuthu, M. Venkateswarlu, N. Satyanarayana, Mater. Res. Bull., 42, 1619 (2007).

[9] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, Sol. Energy Mater. Sol. Cells, 77, 229 (2003).

[10] C.H. Han, Z.Y. Li, J.Y. Shena, J. Hazard. Mater., 168, 215 (2009).

[11] L. Wenhua, L. Hong, C. Saoan, Z. Jianqing, C. Chunan, J. Photochem. Photobiol. A, 131, 125 (2000).

[12] K.H. Yoon, W.J. Choi, D.H. Kang, Thin Solid Films, 372, 250 (2000).

[13] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo, K.Domen, Chem. Commun., 357 (1998).

[14] S. Ikeda, T. Takata, T. Kondo, G. Hitoki, Michikazu Hara, Junko N. Kondo, Kazunari Domen, Hideo Hosono, Hiroshi Kawazoe, Akira Tanaka, Chem. Commun., 2185 (1998).

[15] J. Li, L. Liu, Y. Yu, Electrochem. Commun., 6, 940 (2004).

[16] H.J. Teuber and W. Schmidtke, Chem. Ber., 1257 (1960).

[17] M. Muneer, M. Qamar, D. Bahmemann, J. Mol. Catal. A: Chem., 234, 151 (2005).

[18] W.R. Bansal, N. Ram, K.S. Sidhu, Indian J. Chem. B, 14, 123 (1976).

[19] S. Takenaka, T. Kuriyama, T. Tanaka, T. Funabiki, S. Yoshida, J. Catal., 155, 196 (1995).

[20] S. Puri, W.R. Bansal, K.S. Sidhu, Indian J. Chem., 11, 828 (1973).

[21] C. Karunakaran, S. Senthilvelan, S. Karuthapandian, J. Photochem. Photobiol. A Chem., 172, 207 (2005).