Electroanalysis of Diazepam on Nanosize Conducting Poly (3-Methylthiophene) Modified Glassy Carbon Electrode

Electroanalysis of Diazepam on Nanosize Conducting Poly (3-Methylthiophene) Modified Glassy Carbon Electrode

A. Lakshmi G. Gopu S.Thanikaikarasan T.Mahalingam Peggy Alvarezh RP.J.Sebastian C.Vedhi*

Research Department of Chemistry, VO Chidambaram College, Tuticorin – 628 008, Tamilnadu, India

Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003, Tamilnadu, India

Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli- 627 152, Tamil Nadu, India

Department of Electrical and Computer Engineering, Ajou University, Suwon – 443 749, South Korea.

Universidad Politécnica de Chiapas, Eduardo J. Selvas s/n col. Magisterial s/n CP 29010 Tuxtla Gutiérrez Chiapas, México

Instituto de Energias Renovables, UNAM, Temixco, 62580, Morelos, Mexico.

Corresponding Author Email: 
cvedhi75@rediffmail.com; chinavedhi@yahoo.co.in , sjp@ier.unam.mx
Page: 
185-190
|
DOI: 
https://doi.org/10.14447/jnmes.v17i3.420
Received: 
February 03, 2014
|
Accepted: 
June 17, 2014
|
Published: 
October 03, 2014
| Citation
Abstract: 

A glassy carbon electrode (GCE) was modified with nanosize poly (3-methylthiophene) (P3MT) and used for the sensitive voltammetric determination of diazepam. The cyclic voltammetric response of the bare GCE was compared with the P3MT modified electrode. Electrochemical impedance response of diazepam on modified GCE was studied by various concentrations of diazepam from 0.2 μM to 0.6 μM. The poly (3-methylthiophene) modified glassy carbon electrode (P3MT/GCE) can greatly enhance the peak currents and the detection sensitivity of diazepam under optimal conditions. The quantitative analysis of diazepam was made by the DPSV method. The experimental results showed that the peak current increased with the increase in concentration of diazepam. A calibration was made, which indicated the linear dependence of peak current with concentration (ip = 13.31Conc. + 0.4359R2 = 0.9948) in the range od determination and ot was found to be good between 0.2 and 1.07 μg/L. The limit of detection was 0.1μg/mL. The reproducibility of the stripping signal was realized in terms of relative standard deviation for 6 identical measurements and was found to be 2.6%. The effect of interference of different cations and anions on the oxidation of diazepam was studied. Real sample analysis of diazepam was also studied through DPSV.

Keywords: 

Nanosize poly(3-methylthiophene), Diazepam, Electrochemical impedance, Glassy carbon

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgement

We are gratefully acknowledge Department of Science and Technology (SERC FAST TRACK), New Delhi, India for the financial assistance. Also the authors (S.Thanikaikarasan and C.Vedhi) acknowledge Dr.P.J.Sebastian, UNAM, Mexico for his kind discussion about this research work.

  References

[1] C. Vedhi, G. Selvanathan, P. Arumugam, Ionics, 15, 377 (2009).

[2] B. Muralidharan, G. Gopu, C. Vedhi, P. Manisankar, J. Appl. Electrochem., 39, 1177 (2009).

[3] D.C. Tiwari, Rejeev Jain, Shraddha Sharma, Indian J. Chem. Technol., 15. 319 (2008).

[4] J. Wang, R. Li, Anal. Chem., 61, 2809 (1989).

[5] L. Aguı, B. Serra, P. Yanez-Sedeno, A.J. Reviejo, J.M. Pingarron, Electroanal., 13, 1231 (2001).

[6] H.B. Mark Jr., N. Atta, Y.L. Ma, K.L. Petticrew, H. Zimmer, Y. Shi, S.K. Lunsford, J.F. Rubinson, A. Galal, Bioelectrochem. Bioenerg., 38, 229 (1995).

[7] N.F. Atta, I. Marawi, K.L. Petticrew, H. Zimmer, H.B. Mark Jr., A. Galal, J. Electroanal. Chem., 408, 47 (1996).

[8] A. Galal, J. Solid State Electrochem., 2, 7 (1998).

[9] H.S. Wang, D.Q. Huang, R.M. Liu, J. Electroanal. Chem., 570, 83 (2004).

[10] L. Augi, A. Gonzalez-Cortes, P. Yanez-Sedeno, J.M. Pingarron, Anal. Chim. Acta, 401, 145 (1999).

[11] Huai-Sheng Wang, Tian-Hua Li, Wen-Li Jia, Hong-Yan Xu, Biosens. Bioelectron., 22, 664 (2006).

[12] P. Jaraba, L. Aguı, P. Yanez-Sedeno, J.M. Pingarron, Electrochim. Acta, 43, 3555 (1998).

[13] C. Lopez de Armentia, C. Sampedro, M.A. Goicolea, Z. Gomez de Balugera, E. Rodriguez, R. Barrio, Electroanal., 11, 1222 (1999).

[14] Hanane Zejli, J.L. Patrick Sharrock, I. Hidalgo-Hidalgo de Cisneros, I. Naranjo-Rodriguez, Khalid R. Temsamani, Talanta, 68, 79 (2005).

[15] A.M. Titus, J. Msagati, Catherine Ngila, Talanta, 58, 605 (2002).

[16] Huai-Sheng Wang, De-Qian Huang, Ren-Min Liu, J. Electroanal. Chem. 570, 83 (2004).

[17] He Zhang, Jinsheng Zhao, Houting Liu, Huaisheng Wang, Renmin Liu, Jifeng Liu, Int. J. Electrochem. Sci., 5, 295 (2010).

[18] M.E. Lozano-Chaves, J.M. Palacios-Santander, L.M. Cubillana-Aguilera, I, Naranjo-Rodriguez, J.L. Hidalgo-Hidalgo-de-Cisneros, Sens. Actuators B, 115, 575 (2006).

[19] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York (1976).

[20] R. Maalouf, H. Chebib, Y. Saikali, O. Vittori, M. Sigaud, N.J. Renault, Biosens. Bioelectron., 22, 2682 (2007).

[21] R.K. Shervedani, S.A. Mozaffari, Anal. Chim. Acta, 562, 223 (2006).

[22] Jia–Xuan Wei, Arun Prakash Periasamy, Shen-Ming Chen, Int. J. Electrochem. Sci., 6, 2411 (2011).