Growth and Characterization of Electroplated NiO Coatings

Growth and Characterization of Electroplated NiO Coatings

B. Bharathi S. Thanikaikarasan* Pratap Kollu P.V. Chandrasekar T. Mahalingam Luis Lxtlilco

Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152, Tamil Nadu, India.

DST-INSPIRE Faculty, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai – 400 076, Maharashtra, India.

College of Physics and Information Engineering, Institute of Optoelectronic Display, Fuzhou University, Fuzhou-350002, Republic of China.

Department of Electrical and Computer Engineering, Ajou University, Suwon – 443 749, South Korea.

Universidad Politecnica del Estado de Guerrero, Puente Campusano, Taxco, Guerrero, 40290, Mexico.

Corresponding Author Email:
February 10, 2014
July 15, 2014
October 03, 2014
| Citation

Thin films of NiO have been prepared using potentiostatic electrodeposition technique from an aqueous electrolytic bath containing NiSO4. Deposited films have been characterized using x-ray diffraction, scanning electron microscopy and energy dispersive analysis by x-rays. X-ray diffraction patterns showed that the prepared films possess polycrystalline nature with face centered cubic structure. Surface morphology and film composition showed that films with better stoichiometry and smooth surface are obtained at optimized growth condition. Optical absorption analysis showed that the prepared films possess direct band gap value around 3.46 eV.


NiO; thin films, electrodeposition; x-ray diffraction; optical absorption analysis

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions

The corresponding author (S. Thanikaikarasan) gratefully acknowledges the Board of Research in Nuclear Sciences–Department of Atomic Energy (BRNS-DAE), Mumbai, India for providing Electroplating Unit through Equipment Head with File No.2012/34/13/BRNS/No.166 to carry out this work. This work was partially supported by DGAPA-UNAM through the project IT 100413.


[1] Eneko Azaceta, Sudam Chavhan, Paola Rossi, Marzia Paderi, Sebastien Fantini, Mariana Ungureanu, Oscar Miguel, Hans-Jurgen Grandea, Ramon Tena-Zaera, Electrochim. Acta, 71, 39 (2012).

[2] P. Poizot, S. Laurelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature, 407, 496 (2000).

[3] U. Diebold, Surf. Sci. Rep., 48, 53 (2003).

[4] N.P. Padture, M. Gell, E.H. Jordan, Mater. Sci., 296, 280 (2002).

[5] K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nature Materials, 5, 291 (2006).

[6] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Do˘gan, V. Avrutin, S.J. Cho, H. Morkoc¸ J. Appl. Phys., 98, 041301 (2005).

[7] Lili Zhao, Ge Su, Wei Liu, Lixin Cao, Jing Wang, Zheng Dong, Meiqin Song, Appl. Surf. Sci., 257, 3974 (2011).

[8] Y. Makimura, A. Rougier, J.M. Tarascon, Appl. Surf. Sci., 252, 4593 (2006).

[9] H.R. Liu, G.Y. Yan, F. Liu, Y.Y. Zhong, B.X. Feng, J. Alloys Compd., 481, 385 (2009).

[10] K.K. Purushothaman, G. Muralidharan, J. Sol Gel Sci. Technol., 46, 190 (2008).

[11] J. Li, R. Yan, B. Xiao, D.T. Liang, D.H. Lee, Energy Fuels, 22, 16 (2008).

[12] Gosh M, Biswas K, Sundaresan A. Rao, J. Mater Chem., 16, 106 (2006).

[13] I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rejacek, Sens. Actuat., 57, 147 (1999).

[14] N. Shaigan, D.G. Ivery, W. Chen, J. Electrochem. Soc., 155, 278 (2008).

[15] B. Sasi, K.G. Gopalchandran, Nanotechnol., 18, 115613 (2007).

[16] D-D. Zhao, M.W. Xu, W-J, A. Zhou, J. Zhang, H.L. Li, Electrochim. Acta., 53, 2669 (2008).

[17] Y.Y. Xi, Y.F. Hsu, A.B. Djurisic, A.M.C. Ng, W.K. Chan, H.L. Tam, K.W. Cheah, Appl. Phys. Lett., 92, 113505 (2008).

[18] C.R. Magana, D.R. Acosta, A.I. Martiinez, J.M. Ortega, Solar Energy, 80, 161 (2006).

[19] B.A. Reguig, A. Khelil, L. Cattlin, M. Morsli, J.C. Bernedè, Appl. Surf. Sci., 253, 4330 (2007).

[20] X. Hou, J. Williams, K.L. Choy, Thin Solid Films, 495, 262 (2006).

[21] S. Thanikaikarasan, T. Mahalingam, J. Alloys Compound, 511, 115 (2012).

[22] Sethuramachandran Thanikaikarasan, Thaiyan Mahalingam, V. Dhanasekaran, A. Kathalingam, Jin-Koo Rhee, J. Mater. Science: Mater Electron, 23, 1562 (2012).

[23] S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Yong Deak Kim, Taekyu Kim, Vacuum, 83, 1066 (2009).

[24] T. Mahalingam, V.S. John, S. Rajendran, P.J. Sebastian, Semicond. Sci. Tech., 17, 465 (2002).

[25] Joined Council for Powder Diffracted System - International Centre for Diffraction Data, PDF File No:04 0835, Pennsylvenia, USA.

[26] T. Mahalingam, S. Thanikaikarasan, R. Chandramohan, M. Raja, C. Sanjeeviraja, Jong-Ho Kim, Yong Deak Kim, Mater. Chem. Phys., 106, 369 (2007).

[27] X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun., 137, 581 (2006).