Structural, Morphological and Impedance Spectroscopic Analyses of Nano Li(Li0.05Ni0.4Co0.3Mn0.25)O2 Cathode Material Prepared by Sol-Gel Method

Structural, Morphological and Impedance Spectroscopic Analyses of Nano Li(Li0.05Ni0.4Co0.3Mn0.25)O2 Cathode Material Prepared by Sol-Gel Method

A. Nichelson S. Thanikaikarasan Pratap Kollu P. J. Sebastian T. Mahalingam X. Sahaya Shajan*

Centre for Scientific and Applied Research, PSN College of Engineering and Technology, Tirunelveli-627 152, Tamil Nadu, India.

DST-INSPIRE Faculty, Department of Metallurgical Engineering and Materials Science,Indian Institute of Technology, Mumbai-400076,Tamil Nadu, India.

IER-UNAM, 62580, Temixco, Morelos, Mexico

Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon 443 749, Republic of Korea.

Corresponding Author Email:,
January 25, 2014
July 14, 2014
October 03, 2014
| Citation

In the present work, layered lithium rich Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode materials were synthesized and its structural and electrical studies were analyzed. Layered Li(Li0.05Ni0.4Co0.3Mn0.25)Ocathode material was prepared by sol-gel technique using citric acid as chelating agent. The prepared sample was characterized by X-ray diffraction, SEM-EDS studies. The crystallite size of the Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode material was about 57 nm in which the diffusion path of lithium ion is effectively possible. The complexation behavior of prepared cathode material was analyzed by FT-IR spectroscopy. The electrical properties of the prepared Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode material was studied by impedance and dielectric spectral analyzes. The maximum ionic conductivity of Li(Li0.05Ni0.4Co0.3Mn0.25)O2 was found to be in the order of 10-3.4 S/cm. The dielectric analysis of cathode material confirms the non-Debye type behavior.


Sol-gel synthesis, nanoparticles, lithium batteries, ionic conductivity, dielectric properties.

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions

[1] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).

[2] J.W. Fergus, J. Power Sources, 195, 939 (2010).

[3] N. Yabuuchi, T. Ohzuku, J. Power Sources, 119, 117 (2003).

[4] Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, J. Power Sources, 119, 644 (2003).

[5] S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, Y.Q. Zhang, X.L. Wang, C.D. Gu, Electrochim. Acta, 88, 671 (2013).

[6] Q. Liu, K. Du, H. Guo, Z.D. Peng, Yan-bing Cao, Guo-rong Hu, Electrochim. Acta, 90, 350 (2013).

[7] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Prog. Mater. Sci., 50, 881 (2005).

[8] T.H. Cho, S.M. Park, M. Yoshio, T. Hirai, Y. Hideshima, J. Power Sources, 142, 306 (2005).

[9] P. Suresh, S. Rodrigues, A.K. Shukla, H.N. Vasan, N. Munichandraiah, Solid State Ionics, 176, 281 (2005).

[10] S.H. Kang, I. Belharouak, Y.K. Sun, K. Amine, J. Power Sources, 146, 650 (2005).

[11] K.S. Park, M.H. Cho, S.J. Jin, K.S. Nahm, Y.S. Hong, Solid State Ionics, 171, 141 (2004).

[12] A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, C. Delmas, Solid State ionics, 90, 83 (1996).

[13] B.J. Hwang, R. Santhanam, D.G. Liu, J. Power Sources, 443, 97 (2001).

[14] S.K. Jeong, C.H. Song, K.S. Nahm, A.M. Stephan, Electrochim. Acta, 52, 885 (2006).

[15] Z. Lu, J.R. Dan, J. Electrochem. Soc., 149, A815 (2002).

[16] J.H. Kim, C.W. Park, Y.K. Sun, Solid State Ionics, 164, 43 (2003).

[17] H.S. Kim, M. Kong, K. Kim, I.J. Kim, H.B. Gu, J. Power Sources, 171, 917 (2007).

[18] K. Karuppasamy, C. Vijil Vani, R. Antony, S. Balakumar, X. Sahaya Shajan, Polym. Bull., 70, 2531 (2013).

[19] K. Karuppasamy, C. Vijil Vani, A. Nichelson, S. Balakumar, X. Sahaya Shajan, AIP Conf. Proc., 1536, 45 (2013).

[20] M.G.S.R. Thomas, P.G. Bruce, J,B. Goodenough, Solid State Ionics, 18&19, 794 (1986).

[21] F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem., 78, 639 (1974).

[22] K.S. Rao, D.M. Prasad, P.M. Krishna, B. Tilak, K.C. Varadarajulu, Mater. Sci. Eng. B., 133, 141 (2006).