Effect of Dye on the Performance of Nitrogen Doped TiO2 Solar Cell Prepared via Ammonia Treated Liquid Phase Deposition Technique

Effect of Dye on the Performance of Nitrogen Doped TiO2 Solar Cell Prepared via Ammonia Treated Liquid Phase Deposition Technique

M. Y.A. Rahman* A. A. Umar S. K.M. Saad M. M. Salleh A. Ishaq

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

College of Foundation and General Studies, Universiti Tenaga Nasional, 43009, Kajang, Selangor, Malaysia

National Centre for Physics, Quaid-i-Azam University, Islamabad, Pakistan

Corresponding Author Email: 
September 18, 2013
January 10, 2014
February 26, 20
| Citation

This paper reports the utilization of nitrogen-doped TiO2 nanoparticle in dye-sensitized solar cell (DSSC). The TiO2 nanoparticles were synthesized on ITO substrate via a simple technique, namely, liquid phase deposition (LPD). 7.5% nitrogen from NH3 dopant source was doped into the TiO2 samples by spin coating technique. The nitrogen doped TiO2 samples were then utilized as photovoltaic materials in a photoelectrochemical cell of ITO/TiO2/electrolyte/platinum sensitized with N-719, N-3 and Z-907 dyes, respectively. It was found that the photovoltaic parameters such as short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (η) are influenced by the organic dyes. The cell sensitized with N-719 dye demonstrated the highest photovoltaic parameters. These results are supported with the UV-Vis analysis, showing that the N-719 dye possessed the broadest window absorption and the highest absorption peak in visible region of light spectrum.


dye-sensitized solar cell, nitrogen doping, optical absorption, TiO2

1. Introduction
2. Experimiental
3. Results and Discussion
4. Conclusions
5. Acknowledgments

This work was supported by The Ministry of Science, Technology and Innovation of Malaysia under research grant 03-02-03-SF0196.


[1] Gratzel M., J. Photochem. Photobiol C: Photochem Rev., 4, 145 (2003).

[2] Park N.G., Lagemaat J., Frank A.J., J. Phys. Chem. B, 104, 8989 (2000).

[3] Kim D.H., Lee S., Park J.H., Noh J.H., Park I.J., Seong W.M., Hong K.S., Sol. Ener. Mater. Sol. Cell., 96, 276 (2012).

[4] Xie Y.L., Li Z.X., Xu Z.G., Zhang H.L., Electrochem. Comm., 13, 788 (2011).

[5] Li F., Mater. Sci. Semicond. Process., 15, 11 (2012).

[6] Wang J., Jin E.M., Park J.Y., Wang W.L., Zhao X.G., Gu H.B., Nano Resear. Lett., 7, 1 (2012).

[7] Valentin C.D., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C., Giamello E. Chem. Phys., 339, 44 (2007).

[8] Pan J.H., Han G., Zhou R., Zhao X.S., Chem. Comm., 47, 6942 (2011).

[9] Babu V.J., Kumar M.K., Nair A.S., Kheng T.L., Allakhverdiev S.I., Ramakrishna S., Int. J. Hydro. Ener., 37, 8897 (2012).

[10] Raut N.C., Matthews T., Panda K., Sundaravel B., Dasha S., Tyagi A.K., RSC Advances, 2, 812 (2012).

[11] Li J., Li C-J., Lai Y-K., Du R-G., Surf Coat Tech., 205, 557 (2010).

[12] In S., Vesborg P.C.K., Abrams B.L., Hou Y., Chorkendorff I., J. Photochem. Photobiol. A. Chem., 222, 258 (2011).

[13] Xiang Q., Yu J., Jaroniec M., Phys. Chem. Chem. Phys., 13, 4853 (2011).

[14] Umar A.A., Oyama M., Crystal Growth and Design, 8, 1808 (2008).

[15] Taer E., Deraman M., Talib I.A., Umar A.A., Oyama M., Yunus R.M., Current Applied Physics, 10, 1071 (2010).

[16] Sima C., Grigoriu C., Antohe S., Thin Solid Films, 519, 595 (2010).

[17] Ion L., Enculescu I., Iftimie S., Ghenescu V., Tazlaoanu C., Besleaga C., Mitran T.L., Antohe V.A., Gugiu M.M., Antohe S., Chalcogenide Letters, 7, 521 (2010).

[18] Kang S.H., Kim H.S., Kim J.Y., Sung Y.E., Mater. Chem. Phys., 124, 422 (2010).

[19] Guo W., W.L., Chen Z., Boschloo G., Hagfeldt A., Ma T., J. Photochem. Photobiol. A. Chem., 219, 180 (2011).

[20] Guo W., W.L., Chen Z., Boschloo G., Hagfeldt A., Ma T., Electrochim. Acta, 56, 4611 (2011).

[21] Guo W., Shen Y., Wu L., Gao Y., Ma T., J. Phys Chem. C., 115, 21494 (2011).