Synthesis of Nanoporous TiO2 Thin Films for Photocatalytic Degradation of Methylene Blue

Synthesis of Nanoporous TiO2 Thin Films for Photocatalytic Degradation of Methylene Blue

M. Estrada C. Reza J. Salmones* J.A. Wang M.E. Manríquez J.M. Mora M.L. Hernández A. Zúñiga J.L. Contreras

Laboratorio de Investigación en Fisicoquímica y Materiales, Departamento de Ingeniería Química Industrial, ESIQIE, Instituto Politécnico Nacional, UPALM, Col. Zacatenco, 07738 México D.F., México.

Laboratorio de Catálisis y Materiales, ESIQIE, Instituto Politécnico Nacional, UPALM, Col. Zacatenco, 07738 México D.F., México.

Departamento de Ingeniería Metalúrgica y Materiales, ESIQIE, Instituto Politécnico Nacional, UPALM, Col. Zacatenco, 07738 México D.F., México.

División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, Av. Sn. Pablo 180, Col. Reynosa, C.P. 02200, México D.F., México.

Corresponding Author Email: 
jose_salmones@yahoo.com.mx
Page: 
023-028
|
DOI: 
https://doi.org/10.14447/jnmes.v17i1.439
Received: 
November 21, 2013
|
Accepted: 
January 20, 2014
|
Published: 
February 24, 2014
| Citation
Abstract: 

This work reports a structure and photocatalytic activity of nanoporous titania (TiO2) thin films by an anodizing approach. Xray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) studies showed that tetragonal anatase was the main phase in the thin films that consisted of countless disordered nanopores in the order of 10 to 15 nm. In the photocatalytic degradation of methylene blue, the titania thin films showed a good photocatalytic activity. 82.2 % methylene blue could be photodegraded by titania thin films with UV radiation. XPS results indicate that during the degradation of methylene blue, some Ti3+ may be partially oxidized to Ti4+ in the TiO2 films and the surface hydroxyls directly participate in the reaction. Our nanoporous titania thin films is commensurable to Degussa-25 TiO2 powders because the latter requires filtration in each treatment; it is also much superior to the direct photolysis approach with respect to photoactivity.

Keywords: 

Nanoporous thin film; anodization; TiO2; methylene blue; photocatalysis.

1. Introduction
2. Experimiental Procedure
3. Results and Discussion
4. Concilusions
5. Acknowledgments

This research was partially supported by CONACyT-Mexico project 82798-CB2007, SIP-IPN20110164, and SIP-IPN20120793. The authors are thankful to Nanosciences, Micro and anotechnologies

Center of IPN for sample characterization.

  References

[1] M.A. Fox, M.T. Dulay, Chem. Rev., 93, 341 (1993).

[2] W.A. Jacoby, D.M. Blake, J.A. Fennell, J.E. Boulter, L.M. Vargo, M.C. George, S.K. Dolberg, J. Air and Waste Manage. Assoc., 46, 891 (1996).

[3] K. Rajeshwar, C.R. Chenthamarakshan, S. Goeringer, M. Djukic, Pure Appl. Chem., 73, 1849 (2001).

[4] S-C. Jung, S-J. Kim, N. Imaishi, Y-I. Cho, Applied Catalysis B: Environmental, 55, 253 (2005).

[5] I. Sopyan, M. Watanabe, K. Hashimoto, A. Fujishima, Journal of Photochemistry and Photobiology, A: Chemistry, 98, 79 (1996).

[6] N. Smirnova, A. Eremenko, V. Gayvoronskij, I. Petrik, Y. Gnatyuk, G. Krylova, A. Korchev, A. Chuiko, Journal of Sol-Gel Science and Technology, 32, 357 (2004).

[7] S-H. Lee, M. Kang, S.M. Cho, G. Young Han, B-W. Kim, K. June Yoon, C-H. Chung, Journal of Photochemistry and Photobiology A: Chemistry, 146, 121 (2001).

[8] S-C. Jung, S-J. Kim, N. Imaishi, Y-I. Cho, Applied Catalysis B: Environmental, 55, 253 (2005).

[9] K. Onoda, S. Yoshikawa, Applied Catalysis B: Environmental, 80, 277 (2008).

[10] D.V. Bavykin, F.C. Walsh. Titanate and Titania Nanotubes: Synthesis, Properties and Applications, RSC Nanoscience & Nanotechnology No. 12, Royal Society of Chemistry, Cambridge UK, 2010, p. 37.

[11] J. Yu, G. Dai, B. Cheng, J. Phys. Chem. C, 114, 19378 (2010).

[12] K. Onoda, S. Yoshikawa, Applied Catalysis B: Environmental, 80, 277 (2008).

[13] K. Onoda, S. Yoshikawa, Journal of Solid State Chemistry, 180, 3425 (2007).

[14] W. Guo, D. Johnson, Physical Review B., 67, 0754111 (2003).

[15] J. Ng, X. Zhang, T. Zhang, J-H. Pan, J-H. Alan Du, D.D. Sun. J. Chem. Technol. Biotechnol., 85, 1061 (2010).

[16] C. Suryanarayana, M. Grant Norton. X Ray Diffraction: A practical Approach, Plenum Press, New York, 1998, p207-222.

[17] G. Busca, The use of Infrared Spectroscopic Methods in the Field of Heterogeneous Catalysis by Metal Oxides, in: S. David Jackson, J. Hargreaves (Eds.), Metal Oxide Catalysis, Wiley VCH., Verlag GmbH & Co. KGaA, Weinheim, 2009, p118.

[18] T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist, S.E. Lindquist, J. Phys. Chem., 107, 5709 (2003).

[19] L. Wan, J.F. Li, J.Y. Feng, W. Sun, Z.Q. Mao, Materials Science and Engineering B, 139, 216 (2007).

[20] Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu, W. Huang. J. Phys. Chem. C, 111, 12434 (2007).

[21] A. Zwijnenburg, A. Goossens, W.G. Sloof, W.J. Menno, A.M. van der Kraan, L. Jos de Jongh, M. Makkee, J.A. Moulijn. J. Phys. Chem. B., 106, 9853 (2002).

[22] S. Södergrendergren, H. Siegbahn, H. Rensmo, H Lindstrom, A. Hagfeldt, S-E. Lindquist, J. Phys. Chem. B, 101, 3087 (1997).

[23] C.N. Sayers, N.R. Armstrong, Surface Science, 77, 301 (1978).