Effect of Two Anodic Materials and RuxMoySez as a Cathode Catalyst on the Performance of Two Singlw Chamber Microbial Fuel Cells

Effect of Two Anodic Materials and RuxMoySez as a Cathode Catalyst on the Performance of Two Singlw Chamber Microbial Fuel Cells

A.L. Vázquez-Larios O. Solorza-Feria R. de G. González-Huerta M.T.Ponce-Noyola J. Barrera-Cortés N. Rinderknecht-Seijas H. M. Poggi-Varaldo

Centro de Investigación y de Estudios Avanzados del IPN, Depto. Biotecnología y Bioingeniería, Environmental Biotechnology and Renewable Energy R&D Group, Apdo. Postal 14-740, 07000 México D.F., México

Depto. Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México

ESIQIE-IPN, Laboratorio de Foto-electrocatálisis, UPALM, CP 07738 México D.F., México

Corresponding Author Email: 
hectorpoggi2001@gmail.com
Page: 
163-170
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.6
Received: 
15 November 2012
| |
Accepted: 
4 January 2013
| | Citation
Abstract: 

The objectives of this work were to evaluate (i) the application of a bimetallic chalcogenide, RuxMoySez, as an oxygen reduc-

tion reaction (ORR) catalyst and (ii) the effect of the type of two anodic materials on the performance of two microbial fuel cells (MFCs). A single chamber MFC-T was built with a plexiglass cylinder, the two extreme circular faces were fitted with PEM-cathode assemblage, i.e., left and right faces. The anode consisted of 65 small triangular pieces of graphite filling the anodic chamber. A second MFC-C had a ‘sandwich’ arrangement anode-PEM-cathode. The cathodes were made of flexible carbon-cloth containing catalysts loading of 1mg/cm2 RuxMoySez or 0.5mg/cm2 Pt. Power derived by cell T with cathode chalcogenide catalyst was 43% inferior to that of a similar cell with Pt although the cost of the first catalyst is significantly lower than that of Pt, i.e., 73% lower. Finally, application of graphite anode made of small triangular pieces significantly improved the performance of a MFC-T that used RuxMoySez as a cathodic catalyst for ORR.

Keywords: 

anodic material; carbon cloth; chalcogenide; graphite; internal resistance; microbial fuel cell; series;parallel

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] A.L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, F. Esparza-Garcia, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, Int J Hydrogen Energy, 36, 6199 (2011).

[2] C. Fuentes-Albarra, A. Del Razo , K. Juarez A. Alvarez- Gallegos, Solar Energy, 86, 1099 (2012).

[3] M. Mahmound, T.A. Gah-Allah, K.M. El-Khatib , F. El-Gohary, Bioresource Tecnology, 102, 10459 (2011).

[4] L.A. Estudillo-Wong, E.M. Arce-Estrad, N. Alonso-Vante A. Manzo-Robled, Catalysis Today, 166, 201 (2011).

[5] T. Romero-Castanon, L.G. Arriaga, U. Cano-Castillo, Journal of Power Sources, 118, 179 (2003).

[6] H. Cheng, W. Yuan, K. Scot, Electrochimica Acta, 52, 466 (2006).

[7] H. Schulenburg M. Hilgendorf, I. Dorband, J. Radni, P. Bogda- nof, S. Fiechte, M. Bro, H. Tributsc, Journal of Power Sources, 155, 47 (2006).

[8] N. Alonso-Vant, I.V. Malakho, S.G. Nikitenk, E.R. Savinov, D.I. Kochubey, Electrochimica Acta, 47, 3807 (2002).

[9]  H. Schulenburg, M. Hilgendorf, I. Dorbandt, J. Radnik, P. Bog- danoff, S. Fiechter, M. Bron, H. Tributsch, Journal of Power Sources, 155,47 (2006).

[10] L. Colmenares Z. Jusy, R.J. Behm, Journal of Physical Chem- istry C, 111, 1273 (2007).

[11] J.J. Inukai, D.X. Ca, A. Wieckowsk, K.C. Chang, A. Menze, V. Komanick, H. Yo. Journal of Physical Chemistry C, 111,  16889 (2007).

[12] K. Suárez-Alcántara, O. Solorza-Feria, Electrochimica Acta, 53, 4981 (2008).

[13] K. Suárez-Alcántara, O. Solorza-Feria, Journal of Power Sour- ces, 192, 165 (2009).

[14] Z. Du, H. Li, T. Gu, Biotechnol Adv., 25, 464 (2007).

[15] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ Sci Technol., 40, 5181 (2006).

[16] H.P. Poggi-Varaldo, A.L. Vázquez-Larios, O. Solorza-Feria, in Fuel cells, Ed. Rodríguez-Varela F.J., Solorza-Feria O., Hernández-Pacheco V., CreateSpace, USA, p.123, Montreal, Canada, 2010.

[17] B.E. Logan, S.A. Cheng, V. Watson, G. Estadt, Environ. Sci Technol., 41, 3341 (2007).

[18] A. Dewan, H. Beyenal, Z. Lewandowski, Environ Sci Tech- nol., 42, 7643 (2008).

[19] X.Y. Zhang, S.A. Cheng, X. Wang, X. Huang, B.E. Logan, Environ Sci Technol., 43, 8456 (2008).

[20] J.C. Wei, P. Lian, X. Huan, Bioresource Technology, 102, 9335 (2011).

[21] M.H. Zhou, M.L. Chi, J.M. Lu, H.H. He, T. Ji, Journal of Power Sources, 196, 4427 (2011).

[22]  K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Envi- ron Sci Technol., 39,8077 (2005).

[23] P. Aelterman, M.Versichele, M. Marzorati, N. Boon, W. Ver- straete, Bioresour Technol., 99, 8895 (2008). 

[24] R.G. González-Huerta, J.A. Chávez-Carvallar, O. Solorza- Feria, J Power Sources, 153, 11 (2006).

[25] R.G. González-Huerta, R. González-Cruz, C. Montero- Ocampo, J. Chávez-Carvallar, O. Solorza-Feria, J. New Mater. Electrochem. Syst., 8, 15 (2005).

[26] K. Suárez-Alcántara, A. Rodríguez-Castellanos, R. Dante, O. Solorza-Feria, J. Power Sources, 157, 114 (2006).

[27] D.C. Montgomery, Design and analysis of experiments, John Wiley 3rd edn., New York, 1991.

[28] A.L.Vazquez-Lario, O. Solorza-Feria, G. Vazquez-Huerta, F. Esparza-Garci, E. Rios-Lea, N. Rinderknecht-Seija, H.M. Poggi-Varald, J. New Mater. Electrochem. Syst., 13, 219 (2010).

[29] I. Valdez-Vazquez, E. Ríos-Leal, K.M. Muñoz-Paez, A. Car- mona-Martìnez, Biotechnol. Bioeng., 95, 342 (2006).

[30] I. Valdez-Vazquez, H.M. Poggi-Varaldo, Renewable and Sus- tainable Energy Reviews, 13, 1000 (2009).

[31] H.M. Poggi-Varaldo, J. Trejo-Espino, G. Fernández- Villagómez, F. Esparza-García, S. Caffarel-Méndez, N. Rinderknecht-Seijas, Water Sci. Technol., 40, 179 (1999).

[32] R. Sparling, D. Risbey, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 22, 563 (1997).

[33] A. Ortega-Martínez, O. Solorza-Feria, K. Juárez-López, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, Memorias del 120. Congreso Internacional de la Sociedad Mexicana  del Hidrògeno Proceedings of the 12th International Congress of the Mexican Society for Hydrogen, 161 (2012).

[34] K. Sathish-Kumar, O. Solorza-Feria, R. Hernández-Vera, G. Vazquez-Huerta, H.M. Poggi-Varaldo, J. New Mater. Electro- chem. Syst., 15, 195 (2012).

[35] K. Sathish-Kumar, O. Solorza-Feria, G. Vázquez-Huerta, J.P. Luna-Arias J.P., H.M. Poggi-Varaldo, J. New Mater. Electro- chem. Syst., 15, 181 (2012).

[36] A.L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, E. Rios-Leal, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, J. New Mater. Electrochem. Syst., 14, 99 (2011).

[37] APHA. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 17th edn., Washington DC, 1989.

[38] C. Zhong, B.G. Zhan, L.C. Kong, A. Xu, J.R. N, Journal of Chemical Technology and Biotechnology,  86, 406 (2011). 

[39] R.K. Goud, S.V. Mohan, Bioengineering and Environmental Centre, 36, 13753 (2011).

[40] B. Wan, J.  Ha, Biotechnology Letters, 31, 387 (2009).  [41] S.E. Oh, B.E. Logan, Journal of Power Sources, 167, 11 (2007).

[42] Y. Kim, M.C. Hatzell, A.J. Idutchinson, B.E. Logan, Energy Environ. Sci., 4, 4662 (2011).

[43] P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 40, 3388 (2006).

[44] S.H. Shin, Y. Choi, S.H. Na, S. Jung, S. Kim, Bull. Korean Chem. Soc, 27, 281 (2006).

[45] H.J. Ki, H.S. Par, M.S. Hyu, I.S. Chan, M. Ki, B.H. Ki, En-zyme and Microbial Technolog., 30, 145 (2002).

[46] H. Rismani-Yazd, S.M. Carve, A.D. Christ, I.H. Tuovinen, Journal of Power Sources, 180, 683 (2008).

[47] D.R. Bond, D.R. Lovley, Electricity Appl Environ Microbiol, 69, 1548 (2003).

[48] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuo- minen, D.R. Lovley, Nature, 435,1098 (2005).

[49] C. Garibay-Orijel, E. Ríos-Leal, J. García-Mena, H.M. Poggi- Varaldo, J. Chem. Technol. Biotechnol., 80, 1180 (2005).