Novel Ru(II) Heteroleptic Complexes Anchored to TiO2Nanocrystalline: Synthesis, Char- acterization and Application to Dye-sensitized Solar Cells

Novel Ru(II) Heteroleptic Complexes Anchored to TiO2Nanocrystalline: Synthesis, Char- acterization and Application to Dye-sensitized Solar Cells

Hashem ShahroosvandFahimeh Nasouti 

Chemistry Department, University of Zanjan, Zanjan, Iran

Corresponding Author Email: 
shahroos@znu.ac.ir
Page: 
47-51
|
DOI: 
https://doi.org/10.14447/jnmes.v16i1.52
Received: 
28 March 2012
|
Accepted: 
3 July 2012
|
Published: 
15 August 2012
| Citation
Abstract: 

A series of heteroleptic ruthenium(II) complexes from Ru(NO)(NO3)3 as precursor have been designed, synthesized and char- acterized by 1H-NMR, FT-IR, UV–Vis, PL, ICP and CHN analyses. The reaction details and features were described in detail. Solar cells involving thin films of anatase TiO2 impregnated with these dyes were prepared using an electrolyte solution of I-/I3- in acetonitrile as the electron mediator, and their photovoltaic performance was evaluated. The system lacking carboxyl moiety as anchoring groups shows poor photovoltaic performance. We found that the efficiency of cell is strongly affected by the presence of carboxyl groups of the sensitizing dye, the efficiency of 1,2,4,5-benzentetracarboxylic acid(btec) ruthenium(II) (with three btec moieties) adsorbed on TiO2 nanocrystalline films being 4 times as large as that of bahtophenathrolin ruthenium(II) (with one nitrato group) adsorbed on the same films . An incident pho- ton-to-current conversion efficiency (IPCE) of 8% at 510 nm was obtained for tris(1,2,4,5-benzentetracarboxylic acid) ruthenium(II) (4).

Keywords: 

Nanocrystallin; DSSC, Heteroleptic; Anchoring group.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] (a) B. O’Regan, M. Gratzel, Nature, 353, 737 (1991). (b) M. Grätzel, Inorg. Chem., 44, 6841 (2005).

[2] A. Kukrek, D. Wang, Y. Hou, R. Zong, R. Thummel, Inorg. Chem., 45, 10131 (2006).

[3] W.S. Han, J.K. Han, H.Y. Kim, M.J. Choi, Y.S. Kang, C. Pac, S.O.Kang, Inorg. Chem., 50, 3271 (2011),

[4] K. Hara, H. Horiuchi, R. Katoh, L.P. Singh, H. Sugihara, K. Sayama, S. Murata, M. Tachiya, H. Arakawa, J. Phys. Chem. B, 106, 374 (2002).

[5]A. Fillinger, B.A. Parkinson, J. Electrochem. Soc., 146, 4559 (1999).

[6] K. Murakoshi, G. Kano, Y. Wada, S Yanagida. H. Miyazaki, M. Matsumoto, S. Murasawa, J. Electroanal. Chem., 396, 27 (1995).

[7]K. Hara, H. Sugihara, L. P. Singh, A. Islam, R. Katoh, M. Ya- nagida, K. Sayama, S Murata, H. Arakawa, J. Photochem. Photobiol., A, 145, 117 ( 2001),

[8] (a) K. Kilså, E.I. Mayo, B.S. Brunschwig, H.B. Gray, N.S. Lewis, J.R. Winkler, J. Phys. Chem. B, 108, 15640 (2004). (b)

A. Sepehrifard, A. Stublla, S. Haftchenary, S. Chen, P.G. Pot- vin, S. Morin, J. New Mat. Electrochem. Systems, 11, 281 (2008).

[9] E. Galoppini, Coord. Chem. Rev., 248, 1283 (2004).

[10] D. Wang, R. Mendelsohn, E. Galoppini, J. Phys. Chem. B, 108, 16642 ( 2004).

[11] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, , N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc., 115, 6382 (1993).

[12] C.A. Bignozzi, R. Argazzi, C. Kleverlaan, J. Chem. Soc. Rev., 29, 87 (2000).

[13] Nazeeruddin, M.K.; Graetzel, M. Comp. Coord. Chem. II, 9, 719 ( 2004).

[14] E.A.M. Geary, L.J. Yellowlees, L.A. Jack, I.D.H. Oswald, S. Parsons, N. Hirata, J.R. Durrant, N. Robertson, Inorg. Chem., 44, 242 (2005)

[15] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Guang Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science, 334, 629 (2011).

[16] H. Shahroosvand, M. Khorasani-Motlagh, M. Noroozifar, M. Shabani, A. Fyezbakhsh, M. Abdouss, Int. J. Nanomanufactur- ing, 5, 352 (2010). (b) H. Shahroosvand, P. Abbasi, M. Ameri, M. R. Riahi Dehkordi, Int. J. Photoenergy , 2011, 1 (2011).

[17] R. Argazzi, C.A. Bignozzi,  T.A. Heimer, F.N. Castellano, G.J. Meyer, Inorg. Chem., 33 , 5741(1994).

[18] (a) A. Hugot-Le Goff, S. Joiret, P. Faralas, J. Phys. Chem. B, 103, 9569 (1999). (b) S. Umpathy, A.M. Cartner, A.W. Parker, R.E. Hester, J. Phys. Chem., 94, 1357 (1990).

[19] Y.-X. Weng, L. Li, Y. Liu, L. Wang, G.-Z. Yang, J. Phys. Chem. B, 107, 4356 (2003).

[20] (a).  R.  Cao, Q.  Shi,  D. Sun, M.  Hong,  W.  Bi,  and Y. Zhao, Inorg. Chem., 41, 6161 (2002). (b) Y. Hou, S. Wang, E. Shen, E. Wang, D. Xiao, Y. Li, L. Xu, C. Hu, Inorg. Chim. Acta, 357, 3155 (2004).(c) Z. Tian, T. Song, Y. Fan, S. Shi, L. Wang, Inorg. Chim. Acta, 360, 3424 (2007). (d) D. Cheng, M. A. Khan, R. P. Houser, Inorg. Chim. Acta, 351, 242 (2003).

[21]. (a) H. J. Xu, Y. Cheng, J. F. Sun, B. A. Dougan, Y. Z. Li, X. T. Chen, Z. L. Xue, J. Organomet. Chem. 693, 3851 (2008). (b) M. J. Rose, P. K. Mascharak, Coord. Chem. Rev. 252, 2093 (2008).(c) G. V. Poelhsitz, A. L. Bogado, G. D. de Souza, E. R. Filho, A. A. Batista, M. P. de Araujo, Inorg. Chem. Commun., 10, 133 (2007).

[22]A. Reynal, A. Forneli, E. Martinez-Ferrero, A. S_anchez-Díaz, A.Vidal-Ferran, B. C O’Regan, E. Palomares. J. Am. Chem. Soc., 130, 13558 (2008).

[23]W.S. Han, J.K. Han, H.Y. Kim, M.J. Choi, Y.S. Kang, C. Pac, S.O. Kang, Inorg. Chem., 50, 3271 (2011).