Determination of Mercury (II) Ions by Modified Carbon Paste Electrode Based on Functionalized Nanoporous MCM-48 and Multi-Walled Carbon Nanotubes (MWCNTs)

Determination of Mercury (II) Ions by Modified Carbon Paste Electrode Based on Functionalized Nanoporous MCM-48 and Multi-Walled Carbon Nanotubes (MWCNTs)

Forouzan Aboufazeli Hamid Reza Lotfi Zadeh Zhad Vahid Amani Ezatollah Najafi Omid Sadeghi Najmeh Tavassoli

Department of Chemistry, Islamic Azad University Shahr-e-Rey Branch, P. O. Box 18735-334, Tehran, Iran

Corresponding Author Email:
16 January 2012
3 July 2012
6 August 2012
| Citation

A carbon paste electrode for determination of mercury (II) ions in real samples was prepared. The main objective of the pre- sent study was to evaluate the concentration of mercury ions in different soil, water, plant, and animal muscle samples by utilizing modified carbon paste electrode. Functionalized nanoporous MCM-48 and multi-walled carbon nanotubes material were used in order to increase the efficiency and selectivity of the electrode for mercury ions determination. The electrode composition material was optimized as graphite powder 57%, Paraffin 22%, modified MCM-48 16% and MWCNTs 5% (W/W). The linear range of the electrode was calculated 5.0×10-8 to 1.0×10-3 mol L-1, and a detection limit was obtained 1.5×10-8 mol L-1. The potential slope was achieved 29.7±1.0 mV, and lifetime for the electrode was investigated about 5 months. The proposed method was applied to a number of natural samples and the amount of mercury was determined.


Mercury (II), Modified Carbon Paste, Functionalized MCM-48, MWCNTs, Potentiometry

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

[1] M.H. Mashhadizadeh, I. Sheikhshoaie, Talanta, 60, 73 (2003).

[2] J.L. Manzoori, M.H. Sorouraddin, A.M. Haji Shabani, J. Anal. At. Spectrom., 13, 305 (1998).

[3] J.M. O'Meara, J. Börjesson, D.R. Chettle, Appl. Radiat. Isot., 53, 639 (2000).

[4] M. Tüzen, Food Chem., 80, 119 (2003).

[5] M. Ghaedi, F. Ahmadi, A. Shokrollahi, J. Hazard. Mater., 142, 272 (2007).

[6] Q. Tu, J. Qvarnström, W. Frech, Analyst, 125, 705 (2000).

[7] D.W. Bryce, J.M. Fernndez-Romero, M.D. Luque de Castro, Anal. Lett., 27, 867 (1994).

[8] C. Faller, N. Stojko, N. Yu., G. Henze, Kh.Z. Brainina, Anal. Chim. Acta, 396, 195 (1999).

[9] R.K. Mahajan, I. Kaur, T.S. Lobana, Talanta, 59, 101 (2003). 

[10] K. Wu, S. Hu, J. Fei, W. Bai, Anal. Chim. Acta, 489, 215 (2003).

[11] J.B. Raoof, R. Ojani, H.J. Karimi-Maleh, J. Applied Electro- chem., 39, 1169 (2009).

[12] R.P. Baldwin, J.K. Christensen, L. Kryger, Anal. Chem., 58, 1790 (1986).

[13] M. Javanbakhta, F. Divsarc, A. Badieid, F. Fatollahia, Y. Kha- nianid, M.R. Ganjalie, P. Norouzie, M. Chaloosic, Gh.M. Ziaranif, Electrochim. Acta, 54, 5381 (2009).

[14] M. Ghiacia, B. Rezaei, M. Arshadia, Sensor Actuat B-Chem, 139, 494 (2009).

[15] M.N. Abbas, G.E. Mostafa, Anal. Chim. Acta, 478, 329 (2003). 

[16] K. Schumacher, M. Grun, K.K. Unger, Micropor. Mesopor. Mater., 27, 201 (1999).

[17] V.K. Gupta, A.K. Singh, B.A. Gupta, Anal. Chim. Acta, 575, 198 (2006).

[18] P.R. Buck, E. Lindner, Pure Appl. Chem. 66, 2527 (1994). 

[19] IUPAC Analytical Chemistry Division, Commission on Ana- lytical Nomenclature. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 48, 127 (1976).