Influence of Preparation Conditions on the Properties of Lithium Titanate Fabricated by a Solid-state Method

Influence of Preparation Conditions on the Properties of Lithium Titanate Fabricated by a Solid-state Method

Guo-Qing Zhang Wenjuan Li Hongwei Yang Yahui Wang Sowjanya B. Rapole Yanli Cao Chunbao Zheng Keqiang DingZhanhu Guo 

College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P.R. China

Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China

Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA

Corresponding Author Email: 
dkeqiang@263.net
Page: 
25-32
|
DOI: 
https://doi.org/10.14447/jnmes.v16i1.43
Received: 
26 June 2012
| |
Accepted: 
23 August 2012
| | Citation
Abstract: 

Lithium titanate (Li4Ti5O12) was prepared by a quasi solid-state method using water and ethanol as the solvents, in which Li2CO3 and TiO2 were used as the starting materials. In this work, the calcination temperature, molar ratio of Li to Ti, and sintering time were all well investigated. The obtained samples were thoroughly characterized by XRD and SEM, revealing that the above three factors not only affected the crystal structure, but also the morphologies of the resultant samples. Galvanostatic charge discharge curves were also employed to evaluate the electrochemical performance of the samples. The best electrochemical performance of the samples was observed when the molar ratio of Li to Ti, sintering temperature and time are 6:5, 850 oC and 12 hours, respectively. It was revealed that the smaller particle size and the higher crystallinity of the resultant samples were favorable to enhance the electrochemical performance.

Keywords: 

Li4Ti5O12; solid-state method; sintering temperature; molar ratio; electrochemical performance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] I. Hung, L. Zhou, F. Pourpoint, C.P. Grey, Z. Gan, J. Am. Chem. Soc., 134, 1898 (2012).

[2] A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg, C. Steinhagen, C. Buddie Mullins, K.J. Stevenson, B.A. Korgel, J. Am. Chem. Soc., 133, 20914 (2011).

[3] S. Komaba, B. Kaplan, T. Ohsuka, Y. Kataoka, N. Kumgai, H. Groult, J. Power Sources, 119, 378 (2003).

[4] I. Belharouak , K. Amine, Electrochem. Commun., 5, 435 (2003).

[5] H. Schneider, P. Maire, P. Novák, Electrochim. Acta, 56, 9324 (2011).

[6] H. Ge, N. Li, D. Li, C. Dai, D. Wang, Electrochem. Commun., 10, 1031 (2008).

[7] Y. Shi, L. Wen, F. Li, H.-M. Cheng, J. Power Sources, 196, 8610 (2011).

[8] S. Huang, Z. Wen, X. Zhu, Z. Gu, Electrochem. Commun., 6, 1093 (2004).

[9] Y. Qi, Y. Huang, D. Jia, S.-J. Bao, Z.P. Guo, Electrochim. Acta, 54, 4772 (2009).

[10] N. Zhang, Z. Liu, T. Yang, C. Liao, Z. Wang, K. Sun, Electro- chem. Commun., 13, 654 (2011).

[11] D. Yoshikawa, Y. Kadoma, J.-M. Kim, K. Ui, N. Kumagai, N. Kitamura, Y. Idemoto. Electrochim. Acta, 55, 1872 (2010). 

[12] D.H. Kim, Y.S. Ahn, J. Kim, Electrochem. Commun., 7, 1340 (2005).

[13] M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 9, 2778 (2007).

[14] G.C. Allen, M. Paul, Appl. Spectrosc., 49, 451 (1995). 

[15] V.M. Zainullina, V.P. Zhukov, T.A. Denisova, L.G. Maksimova, J. Struct. Chem. 44, 180 (2003).

[16] H. Yu, X. Zhang, A.F. Jalbout, X. Yan, X. Pan, H Xie, R. Wang, Electrochimica Acta, 53, 4200 (2008).

[17] K.-C. Hsiao, S.-C. Liao, J.-M. Chen, Electrochim. Acta, 53, 7242 (2008).

[18] K.Q. Ding, T. Okajima and T. Ohsaka, Electrochemistry, 75, 35 (2007).

[19] A.Y. Shenouda, K.R. Murali, J. Power Sources, 176, 332 (2008).

[20] M.-R. Yang, T.-H. Teng, S.-H. Wu, J. Power Sources, 159, 307 (2006).

[21] G.T.-K. Fey, Y.G. Chen, H.-M. Kao, J. Power Sources, 189, 169 (2009).

[22] Wei-Jun Zhang, J. Power Sources, 196, 877 (2011).

[23] A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers, M.M. Thackeray, J. Power Sources, 81, 902 (1999).