Improved Commercialized Lithium Titanate Performance in Lithium-ion Batteries by Annealing

Improved Commercialized Lithium Titanate Performance in Lithium-ion Batteries by Annealing

Xinxi LiGuoqing Zhang Zhongqiong Xiong Junqiao Xiong Yongping Qiu 

School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China

Corresponding Author Email: 
gdutlxx@163.com
Page: 
19-23
|
DOI: 
https://doi.org/10.14447/jnmes.v16i1.41
Received: 
28 July 2012
|
Accepted: 
21 August 2012
|
Published: 
16 October 2012
| Citation
Abstract: 

The high rate capability of commercial lithium titanate (Li4Ti5O12; LTO) is improved by annealing. The commercial LTO parti- cles are calcined at a 650 °C for 4 h. XRD, SEM, BET, PSD and electrochemical tests reveal that annealing the sample results in smaller particle sizes, more uniform particle size distribution, and excellent electrochemical performance. In assembling half of the battery at 1C, 3C, and 5C charge–discharge rates, the discharge capacity of sample A (no carbon) reached 170.7, 164.5, 151.8 mAhg–1, respectively, for the first time. The capacity retention rates were 94.6%, 87.6%, and 87.6%, respectively. The discharge capacity of sample B (containing carbon) reached 173.6, 162.7, and 153.5 mAhg–1, respectively, for the first time. The capacity retention rates are 94.1%, 90.9%, and 91.8%, respectively. The cycling stability shows almost no improvement, but the reversible capacity is enhanced. A comparison of the elec- trochemical performances of samples A and B show that the annealing process can play a very important role in carbon-containing sam- ples. The main reason is that carbon itself has good conductivity, whereas carbon coatings also inhibit the grain growth of LTO; smaller grain sizes can shorten the diffusion path of Li+ and promote the reversible capacities of a material.

Keywords: 

Li4Ti5O12; lithium ion battery; rate performance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] R.F. Nelson, J. Power Sources. 91. 2 (2000).

[2] C. Jiang, E. Hosono, H. Zhou. Nanotoday, 1, 28 (2006).

[3] Zhonghao Rao, Shuangfeng Wang. Renewable & Sustainable Energy Reviews, 15, 4554 (2011).

[4] A.D. Robertson, H. Tukamoto, J.T.S. Irvine, J. Electrochem. Soc. 146, 3958 (1999).

[5] T. Doi, Y. Iriyama, T. Abe, Z. Ogumi, Chem. Mater., 17, 1580 (2005).

[6] S.C. Lee, S.M. Lee, J.W. Lee, J.B. Lee, S.M. Lee, S.S. Han, H.C. Lee, H.J. Kim, J. Phys. Chem., C 113, 18420 (2009).

[7]  K. Kataoka, Y. Takahashi, N. Kijima, H. Hayakawa, J. Akimoto, K. Ohshima, SolidState Ionics, 180, 631 (2009).

[8] K.C. Hsiao, S.C. Liao, J.M. Chen, Electrochim. Acta 53 (2008) 7242.

[9] Nakayama M., Ishida Y., Ikuta H. et al., Solid State Ionics, 117, 265 (1999).

[10] Z. Wen, Z. Gu, S. Huang, J. Yang, Z. Lin, O. Yamamoto, J. Power Sources, 146, 670 (2005).

[11] Y. Hao, Q. Lai, Z. Xu, X. Liu, X. Ji, Solid State Ionics, 176, 1201 (2005).

[12] M. Wagemaker, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, J. Phys. Chem., B113, 224 (2009).

[13] P. Reale, S. Panero, F. Ronci, V. Rossi Albertini, B. Scrosati, Chem. Mater., 15, 3437 (2003).

[14] Scrosati B., Panero S., Reale P. et al., J. Power Sources, 105, 161 (2002).

[15] G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, J. Power Sources, 173, 1109 (2007).

[16] X.L. Yao, S. Xie, H.Q. Nian, C.H. Chen, J. Alloys Compd., 465, 375 (2008).

[17] Y. Yu, J.L. Shui, C.H. Chen, Solid State Commun., 135, 485 (2005).

[18] G. Wang, J. Xu, M. Wen, R. Cai, R. Ran, Z. Shao, Solid State Ionics, 179, 946 (2008).

[19] E. Matsui, Y. Abe, M. Senna, A. Guerfi, K. Zaghib, J. Am. Ceram. Soc., 91, 1522 (2008).

[20] N.A. Alias, M.Z. Kufian, L.P. Teo, S.R.Majid, A.K. Arof, J. Alloys Compd., 486, 645 (2009).

[21] S.H. Ju, Y.C. Kang, J. Phys. Chem. Solids, 70, 40 (2009).

[22] D. Yoshikawa, Y. Kadoma, J.M. Kim, K. Ui, N. Kumagai, N. Kitamura, Y. Idemoto, Electrochim. Acta, 55, 1872 (2010). 

[23] D.H. Kim, Y.S. Ahn, J. Kim, Electrochem. Commun., 7, 1340 (2005).

[24] L.C. Yang, Q.S. Gao, Y.H. Zhang, Y. Tang, Y.P. Wu, Electrochem. Commun., 10, 118 (2008).

[25] Elly Setiawati, Masahiko Hayashi, Masaya Takahashi, Takahisa Shodai, Keiichi Saito. J. Power Sources, 196, 10133 (2011).

[26] Seung-Ho Yu, Andrea Pucci, Tobias Herntrich, Marc-Georg Willinger, Seung-Hwan Baek, Yung-Eun Sungac and Nicola Pinna, J. Materials Chemistry, 21, 806 (2011).