Catalytic Activity of Porous Pd-Ni Thin Foam towards Electrooxidation of Methanol

Catalytic Activity of Porous Pd-Ni Thin Foam towards Electrooxidation of Methanol

Ming JinHouyi Ma 

Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China

Corresponding Author Email: 
jinming@mail.qfnu.edu.cn
Page: 
1-4
|
DOI: 
https://doi.org/10.14447/jnmes.v16i1.28
Received: 
29 July 2012
|
Accepted: 
10 September 2012
|
Published: 
25 September 2012
| Citation
Abstract: 

Porous Pd-Ni thin foam was fabricated by a rapid one-step electrodeposition process within hydrogen bubble dynamic tem- plate and characterized by SEM, EDS, and cyclic voltammetry. Morphology and composition of the foam can be modified significantly by applying different deposition conditions, such as concentration ratio of Pd (II) ions to Ni (II) ions in electrolytic solution and deposition time. Electrocatalytic activities of the foam towards methanol oxidation in alkaline media were investigated, which depend mainly on Pd components and its morphology. Low nickel content can assist Pd further enhance the electrocatalytic performance, particularly the toler- ance to intermediates of methanol oxidation, while high nickel content brings adverse effect. The high catalytic activity and the low cost of the Pd-Ni foams enable them to be promising electrocatalysts for the oxidation of methanol in alkaline media.

Keywords: 

porous materials, palladium, nickel, hydrogen bubble template, methanol

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya and K.-I. Ota, Electrochem. Commun., 6, 105 ( 2004).

[2] E. Antolini, Energy Environ. Sci., 2, 915 (2009).

[3] F. Ksar, G. Surendran, L. Ramos, B. Keita, L. Nadjo, E. Prouzet, P. Beaunier, A. Hagege, F. Audonnet, H. Remita, Chem. Mater., 21, 1612 (2009).

[4] S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, J. Power Sources, 195, 1001 (2010).

[5] J.P. Liu, J.Q. Ye, C.W. Xu, S.P. Jiang, Y.X. Tong, Electro- chem. Commun., 9, 2334 (2007).

[6] H.-C. Shin, J. Dong, M. Liu, Adv. Mater., 15, 1610 (2003).

[7] B.J. Plowman, A.P. O’Mullane, P. Selvakannan, S.K. Bhar- gava, Chem. Commun., 46, 9182 (2010).

[8] I. Najdovski, P. Selvakannan, A.P. O’Mullane, S.K. Bhargava, Chem. Eur. J., 17, 10058 (2011).

[9] S. Cherevko, X. Xing, C.-H. Chung, Electrochem. Commun., 12, 467 (2010).

[10]S. Cherevko, C.-H. Chung, Electrochem. Commun., 13, 16 (2011).

[11]W. Huang, L. Fu, Y. Yang, S. Hu, C. Li, Z. Li, Electrochem.

Solid State Lett., 13, K46 (2010).

[12]W.-Z. Jia, K. Wang, Z.-J. Zhu, H.-T. Song, X.-H. Xia, Lang- muir, 23, 11896 (2007).

[13]C. Xu, Z. Tian, P. Shen, S.P. Jiang, Electrochim. Acta, 53, 2610 (2008).

[14]C. Xu, P.K. Shen, Y. Liu, J. Power Sources, 164, 527 (2007). [15]C. Qiu, R. Shang, Y. Xie, Y. Bu, C. Li, H. Ma, Mater. Chem.

Phys., 120, 323 (2010).

[16]M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, J. Power Sources, 134, 160 (2004).

[17]T. Shobha, C.L. Aravinda, P. Bera, L.G. Devi, S.M. Mayanna, Mater. Chem. Phys., 80 (2003) 656.

[18]R.N. Singh, A. Singh, Anindita, Int. J. Hydrogen Energ., 34, 2052 (2009).