Electrochemical Behavior of (Zn, Mn)-Al Nitrated Hydrotalcites

Electrochemical Behavior of (Zn, Mn)-Al Nitrated Hydrotalcites

Alvaro SampieriJorge Vázquez-Arenas Ignacio González Geolar Fetter Heriberto Pfeiffer María-Elena Villafuerte Pedro Bosch 

Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, 72570, Puebla, PUE

Chemical Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1

Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, A. P. 55-534, 09340 Mexico D.F.

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70360, Ciudad Universitaria, 04510 Mexico, D.F.

Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Ciudad Universitaria, 72570, Puebla, PUE

Corresponding Author Email: 
asamcr@yahoo.com
Page: 
301-306
|
DOI: 
https://doi.org/10.14447/jnmes.v15i4.51
Received: 
14 March 2012
|
Accepted: 
17 April 2012
|
Published: 
22 May 2012
| Citation
Abstract: 

The electrochemical behavior of synthetic binary, Zn-Al and Mn-Al, and ternary (Zn-Mn)-Al hydrotalcites (HT) was studied by cyclic voltammetry in alkaline conditions (pH≡12). The Zn-Al HT characterization revealed two irreversible and continuous oxidation processes: i) Zn0|Zn2+ and ii) Zn0|ZnO. On the other hand, the binary HT containing Mn presented a reversible behavior for the oxidation-reduction process Mn4+|Mn3+. The same oxidation-reduction processes were observed in the ternary HT. However, variations in the reduction-oxidation process were detected by XRD for the ternary HT as a result of spinel formation. These results could also be influenced due to a higher accessibility of manganese in HT since the morphology of hydrotalcite (lamellar structure) provides a regular distribution of Mn atoms interacting with Zn atoms through hydroxyl bridges.

Keywords: 

electroactive hydrotalcites, cyclic voltammetry, morphology

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

Authors thank to L. Baños and J. Guzmán for the XRD and EDX analysis. The financial support of CONACYT (project 79132) and PROMEP (project: 103.5/09/4194) are gratefully acknowledged.

  References

[1] Mousty Ch., Anal. Bioanal Chem., 396, 315 (2010).

[2] Walcarius A., Anal. Chim. Acta, 384, 1 (1999).

[3] Macha S.M., Fitch A., Microchim. Acta, 128, 1 (1998).

[4] Evans D.G., Slade R.C., T. Struct. Bond, 2006, 1.

[5] Cavani F., Trifiro F., Vaccari A., Catal. Today, 11, 173 (1991).

[6] Roto R., Villemure G., J. Electroanal. Chem., 527, 123 (2002).

[7] Roto R., Villemure G., Electrochem. Acta, 51, 2539 (2006).

[8] Roto R., Yu L., Villemure G., J. Electroanal. Chem., 587, 263 (2006).

[9] Grygar T., Marken F., Schröder U., Scholz F., Collect. Czech. Chem. Commun., 67, 163 (2002).

[10] Almeida C.M.V.B., Giannetti B.F., Electrochem. Comun., 4, 985 (2002).

[11] Olson C., Adams R.N., Anal. Chim. Acta, 22, 582 (1960).

[12] Sampieri A., Fetter G., Pfeiffer H., Bosch P., Solid State Sci., 9, 394 (2007).

[13] Radha A.V., Vishnu-Kamath P., Bull. Mater. Sci., 26, 661 (2003).

[14] Kühn T., Pöllman H., in 8th International Congress on Applied Mineralogy - ICAM 2004 [Eds.: M. Pecchio, F.R.D. d. Andrade], Aguas de Lindoia, Sao Paulo, Brasil, 2004, pp. 689.

[15] Rivera J.A., Fetter G., Bosch P., Mic. Mes. Mater., 89, 306 (2006).

[16] Miyata S., Clays Clay Miner., 31, 305 (1983).

[17] Aisawa S., Hirahara H., Uchiyama H., Takahashi S., Narita E., J. Solid State Chem., 167, 152 (2002).

[18] Beaudot P., DeRoy M.E., Besse J.P. Chem. Mater., 16, 935 (2004).

[19] del Arco M., Gutierrez S., Martin C., Rives V., Inorg. Chem., 42, 4232 (2003).

[20] Kooli F., Kosuge K., Tsunashima A., J. Solid State Chem., 118, 285 (1995).

[21] Scavetta E, Ballarin B., Berrettoni M., Carpani I., Giorgetti, M., Tonelli D., Electrochem. Acta, 51, 2129 (2006).

[22] Scavetta E., Berrettoni M., Nobili F., Tonelli D., Electroch. Acta, 51, 3305 (2005).

[23] Ballarin B., Berrettoni M., Carpani I., Scavetta E., Tonelli D., Anal. Chim. Acta, 538, 219 (2005).

[24] Carpani I., Berrettoni M., Ballarin B., Giorgetti M., Scavetta E., Tonelli D., Solid State Ionic, 168, 167 (2004).

[25] Shan D., Cosnier S., Mousty C. Biosensor Bioelec., 20, 390 (2004).

[26] Rojas Delgado R., Arandigoyen Vidaurre M., De Pauli C.P., Ulibarri M.A., Avena M.J., J. Colloid Interface Sci., 280, 431 (2004).

[27] Scavetta E., Berrettoni M., Seeber R., Tonelli D. Electroch. Acta, 46, 2681 (2001).

[28] Ballarin B., Morigi M., Scavetta E., Seeber R., Tonelli D., J. Electroanal. Chem., 492, 7 (2000).

[29] Ballarin B., Seeber R., Tonelli D., Vaccari A., J. Electroanal. Chem., 463, 123 (1999).

[30] Ballarin B., Gazzano M., Seeber R., Tonelli D., Vaccari A., J. Electroanal. Chem., 445, 27 (1998).

[31] Yao K., Taniguchi M., Nakata M., Shimazu K., Takahashi M., Yamagishi A., J. Electroanal. Chem., 457, 119 (1998).

[32] Therias S., Lacroix B., Schollhorn B., Mousty C., Palvadeau P., J. Electroanal. Chem., 454, 91 (1998).

[33] Qiu J., Villemure G., J. Electroanal. Chem., 428, 165 (1997).

[34] Qiu J., Villemure G., J. Electroanal. Chem., 395, 159 (1995).

[35] Therias S., Mousty C., Appl. Clay Sci., 10, 147 (1995).

[36] Keita B., Belhouari A., Nadjo L., J. Electroanal. Chem., 314, 345 (1991).

[37] Keita B., Belhouari A., Nadjo L., J. Electroanal. Chem., 355, 235 (1993).

[38] Scavetta E., Berrettoni M., Giorgetti M, Tonelli D., Electrochem. Acta, 47, 2451 (2002).