Hydriding kinetics of LaNi5 using Nucleation-growth and Diffusion Models

Hydriding kinetics of LaNi5 using Nucleation-growth and Diffusion Models

J. PayáA. Freni J.M. Corberán V. Compañ 

Universidad Politécnica de Valencia, Instituto de Ingeniería Energética, Valencia

C.N.R. – Institute for Advanced Technologies ITAE, Messina

Universidad Politécnica de Valencia, Departamento de Termodinámica Aplicada, Valencia

Corresponding Author Email: 
jorpaher@iie.upv.es
Page: 
293-300
|
DOI: 
https://doi.org/10.14447/jnmes.v15i4.50
Received: 
29 December 2011
|
Accepted: 
9 February 2012
|
Published: 
22 February 2012
| Citation
Abstract: 

In this paper, the hydriding kinetics of a LaNi5alloy have been measured with a thermo-gravimetric system. The rate controlling steps have been analyzed. In the α + β phase, a first order Johnson-Mehl-Avrami model provides a good agreement with the measurements. In the ? phase, the previous approach shows that the reaction becomes progressively controlled by the diffusion of hydrogen atoms through the hydride. In order to support this hypothesis, a Crank-Nicholson diffusion model has also been applied and achieved good results. The results show that the transition in the rate controlling mechanism takes place before the static pressure-composition isotherms are reached.

Keywords: 

metal hydride, LaNi5, kinetics, diffusion model

1. Introduction
2. Experimental
3. Sorption Models
4. Results and Discussion
5. Conclusions
Acknowledgments

The authors gratefully acknowledge Marc Linder from the In-stitüt für Technische Thermodynamik des Deutschen Zentrums für Luft- und Raumfahrt (DLR) for his support.

  References

[1] R. Janot, J.B. Eymery, J.M. Tarascon, J. Power Sources, 164, 496 (2007).

[2] M. Linder, R. Kulenovic, Int. J. Hydrogen Energy, 36, 3215 (2011).

[3] H. Dhaou, F. Askri, M. Ben Salah, A. Jemni, S.B Nasrallah,. J. Lamloumi, Int. J. Hydrogen Energy, 32, 576 (2007).

[4] P. Muthukumar, A. Satheesh, M. Linder, R. Mertz, M. Groll, Int. J. Hydrogen Energy, 34, 7253 (2009). Boser, Journal J. Alloys Compd., 46, 91 (1976).

[5] S. Tanaka, J.D. Clewley, T.B., Flanagan, J. Alloys Compd., 56, 137 (1977).

[6] M. Miyamoto, K. Yamaji, Y. Nakata, J. Alloys Compd., 89, 111 (1983).

[7] J. Bloch, J. Alloys Compd., 312, 135 (2000).

[8] E.H. Kisi, A. Gray, J. Alloys Compd., 217, 112 (1995). A. Inomata, H. Aoki, T. Miura, J. Alloys Compd., 278, 103 (1998).

[9] Leela Mohana Reddy, S. Ramaprabhu, Int. J. Hydrogen Energy, 31, 867 (2006).

[10] G. Srinivas, V. Sankaranarayanan, S. Ramaprabhu, Int. J. Hydrogen Energy, 32, 2480 (2007).

[11] G. Srinivas, V. Sankaranarayanan, S. Ramaprabhu, J. Alloys Compd., 448, 159 (2008).

[12] N. Mani, S. Ramaprabhu, Int. J. Hydrogen Energy, 30,53 (2005).

[13] J. Liu, X. Zhang, Q. Li, K.-C. Chou, K.-D. Xu, Int. J. Hydrogen Energy, 34, 1951 (2009).

[14] Q. Li, K.-C. Chou, Q. Lin, L.-J. Jiang, F. Zhan, Int. J. Hydrogen Energy, 29, 1383 (2004).

[15] Q. Li, L.-J. Jiang, K.-C. Chou, Q. Lin, F. Zhan, K.-D. Xu, X.-G. Lu, J.-Y. Zhang, J. Alloys Compd., 399, 101 (2005).

[16] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, Great Britain (1975).

[17] E. Anil Kumar, M. Prakash Maiya, S. Srinivasa Murthy, Int. J. Hydrogen Energy, 32, 2382 (2007).

[18] J. Payá, M. Linder, R. Mertz, J.M. Corberán, Int. J. Hydrogen Energy, 36, 920 (2011).

[19] G. Sandrock, J. Alloys Compd., 293, 877 (1999).

[20] F. Dreisbach, H.W. Lösch, P. Harting, Adsorption, 8, 95 (2002).

[21] J. Payá, M. Linder, E. Laurien, J.M. Corberán, Int. J. Hydrogen Energy, 34, 3173 (2009).

[22] J. Payá, M. Linder, E. Laurien, J.M. Corberán, J. Alloys Compd., 484, 190 (2009).

[23] Y. Fukai, The Metal-Hydrogen System, 88 (1992).

[24] J-Y.Lee, C.N. Park, S.M. Pyun, J. Alloys Compd., 89, 163 (1983).

[25] Y. Ben-Eliyahu, M. Brill, M.H. Mintz, J. Chem. Phys., 111, 6053 (1999).

[26] R.A. Varin, T. Czujko, E.B. Wasmund, Z.S. Wronski, J. Alloys Compd., 432, 217 (2007). A. Jemni, S.B. Nasrallah, Int. J. Hydrogen Energy, 20, 43 (1995).

[27] M.D. Mat, Y. Kaplan, Int. J. Hydrogen Energy, 26, 957 (2001).

[28] M. Gambini, M. Manno, M. Vellini, Int. J. Hydrogen Energy, 33, 6178 (2008).

[29] G. Mohan, M. Prakash Maiya, S. Srinivasa Murthy, Int. J. Hydrogen Energy, 32, 4978 (2007). A. Demircan, M. Demiralp, Y. Kaplan, M.D. Mat, T.N. Veziroglu, Int. J. Hydrogen Energy, 30, 1437 (2005).

[30] Züttel, Metall-hydride Vorlesungsskript (1988).

[31] E.L. Cussler, Mass transfer in fluid systems, Cambridge University Press, University of Minnesota (1984).

[32] J.I. Han, J.-Y. Lee, Int. J. Hydrogen Energy, 14, 181 (1989).