Hydrogen Generation of Al-La-Bi Alloy in Aqueous Inorganic Salt Solutions

Hydrogen Generation of Al-La-Bi Alloy in Aqueous Inorganic Salt Solutions

Jian-Bo LiuLei Tang Chao Li Bin Hong Tang Xia Xiao Hu Wei Xing Mei-qiang Fan

Department of Materials Science and Engineering, China JiLiang University, Hangzhou 310018

Corresponding Author Email: 
fanmeiqiang@126.com, Jbliu@163.com
2 February 2012
30 March 2012
10 April 2012
| Citation

A method for obtaining hydrogen from Al-La-Bi alloy in different solutions was investigated for the production of inexpensive, pure, and safe hydrogen for micro-fuel cells. The hydrogen generation amount and rate could be regulated by changing composition design or salt solutions. Combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and hydrogen generation experiments, the hydrolysis byproduct La(OH)3 and inorganic salt solution stimulated the hydrolysis reaction of Al-La-Bi alloy and water, which was mostly based on micro galvanic cell between Al and Bi in the previous work. Increasing La content led to decrease particle size in the milling process which led to large special surface area and contact area of aluminum and water. Using inorganic salt solution such as Na2SnO3solution might produce metal Sn which covered on Al surface and functioned as a cathode of a micro galvanic cell. The Al-13 wt%La-10 wt%Bi alloy yielded 1113 ml/g hydrogen with 100 % efficiency with 60 min at 343 K.


hydrogen generation, aluminum, lanthanum, bismuth

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

This work was financially supported by the National Natural Science Foundation of China (Project Nos. 21003112) and the Zhejiang Basic Research Program of China (Y4090507).


[1] Whorter S.M., Read C., Ordaz G., Stetson N., Solid State and Materials Science, 15, 29 (2011).

[2] Principi G., Agresti F., Maddalena A., Energy, 34, 2087 (2009).

[3] Shkolnikov E., Vlaskin M., Iljukhin A., J. Power Sources, 185, 967 (2008).

[4] Martineza S.S., Sanchez L.A., Gallegos A.A., Sebastian P.J., Int. J. Hydrogen Energy, 32, 3159 (2007).

[5] Ilyukhina A.V., Kravchenko O.V., Bulychev B.M., Shkolnikov E.I., Int. J. Hydrogen Energy, 35, 1905 (2010).

[6] Fan M.Q., Sun L.X., Xu F., Energy, 35, 1333 (2010).

[7] Czech E., Troczynski T., Int. J. Hydrogen Energy, 35, 1029 (2010).

[8] Mahmoodi K., Alinejad B., Int. J. Hydrogen Energy, 35, 5227 (2010).

[9] Deng Z.Y., Zhu L.L., Tang Y.B., J. Am. Ceram. Soc., 93, 2998 (2010).

[10] Dai H.B., Ma G.L., Wang P., Energy & Enviromental Science, 4, 2206 (2011).

[11] Luo H., Liu J., Yu X.B., J. American Ceramic Society, 94, 3976 (2011).

[12] Fan M.Q., Sun L.X., Xu F., Int. J. Hydrogen Energy, 36. 9791 (2011).

[13] Zhao Z.W., Chen X.Y., Hao M.M., Energy, 36, 2782 (2011).

[14] Ouyang L.Z., Wen Y.J., Xu Y.J., Zhu M., J. Rare Earths, 26, 303 (2008).

[15] Drits M.E., Kadaner E.S., Shoa N.D., Russ. Metall., 1. 113 (1969).

[16] Martin-Garvin R., Massart G., Desre P., C. R. Acad. Sci. Paris, 262, C335 (1966).

[17] Schweitzer, Weeks J.R., Trans. Quart, 54, 185 (1961).

[18] Fan M.Q., Sun L.X., Xu F., Energy&Fuel, 23, 4562 (2009).

[19] Kliski M., Radosevi J., Gudi S., Electrochim Acta, 48, 4167 (2003).

[20] Despic A.R., Radosevic J., Dabic P., Kliskic M., Electrochim. Acta, 35, 1743 (1990).

[21] Shao H.B., Zhang J.Q., Wang J.M., Acta Phys. Chim. Sin., 19, 372 (2003).