Oxygen Evolution Nickel Hydroxide Electrodes in a Ni-MH Battery Prototype

Oxygen Evolution Nickel Hydroxide Electrodes in a Ni-MH Battery Prototype

M.D. Becker D.J. Cuscueta H.R. Salva F. Rodriguez Nieto A.A. Ghilarducci A. Visintin 

INIFTA-CONICET, Diag. 113 y 64, 1900, La Plata

Centro Atómico Bariloche-CNEA, Instituto Balseiro-UNCuyo, CONICET, Av. Bustillo 9500, 8400, San Carlos de Bariloche

INIFTA-CIC, Diag. 113 y 64, 1900, La Plata

Corresponding Author Email: 
dbecker@inifta.unlp.edu.ar
Page: 
277-282
|
DOI: 
https://doi.org/10.14447/jnmes.v15i4.46
Received: 
20 December 2011
|
Accepted: 
10 February 2012
|
Published: 
22 May 2012
| Citation
Abstract: 

The effect of cobalt in both alpha and beta phases on the oxygen evolution of nickel hydroxide was studied. The electrochemical properties of the oxygen evolution reaction on the positive nickel hydroxide electrodes were studied under conditions similar to those of a commercial Ni-MH battery. The presence of different kinds of defects in the structure of the active material was determined by XRD methods distorted and asymmetric reflections in the XRD patterns. Both the morphology of the active material and the additives influence the oxygen evolution potential and the electrochemical characteristics. The experimental results showed that the optimized prototype used in this work is suitable for evaluating several electrochemical parameters. It was shown that the electrode without cobalt exhibited the charging efficiency was 94% and those with cobalt exhibited a charging of 98%.

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
  References

[1] D.A. Corrigan and R.M. Bendert, J. Electrochem. Soc., 136, 723 (1989).

[2] R.M. Barnard, C.F. Randell, F.L. Tye, J. Appl. Electrochem., 10, 127 (1980).

[3] C. Faure, C. Delmas , P. Willmann, J. Power Sources, 36, 497 (1991).

[4] J.Y. Xie, Q.S. Zhang, J.F. Liu, P.F. Shi., Chin J. Power Sources, 23, 238 (1999).

[5] J.Y. Xie, Q.S. Zhang, J.F. Liu, P.F. Shi, Chin. J. Power Sources, 23, 22 (1999).

[6] L. Demourgues-Guerlou, L. Faure, C. Delmas, J. Electrochem Soc., 143, 561(1996).

[7] J. Li, L. Rong, J.M. Wu, S. Hang, J. Power Sources, 79, 86 (1999).

[8] D.J. Cuscueta, PhD thesis, 2010. A. Patterson, Phys. Rev. 56, 10, 978 (1939).

[9] M. Oshitani, H. Yufu, K. Takashima, S. Tsuji and Y. Massumaru, J. Electrochem. Soc., 136 (1989).

[10] L. Gautier, Thesis, University of Bordeaux I, 1995.

[11] B.E. Ezhov and O.G. Malandrin, J. Electrochem Soc, 138, 885 (1991).

[12] R.D. Armstrong and E.A. Charles, J. Power Sources, 25, 89 (1989).

[13] J. Mc Breen, W.E. O'Grady, G. Tourillon, E. Dartyge, A. Fontaine and K.I. Pandya, J. Phys. Chem., 93, 6308 (1989).

[14] R.D. Armstrong, G.W.D. Briggs and E.A. Charles, J. Appl. Electrochem., (1988).

[15] H. Chen, J.M. Wang, T. Pan, Y.L. Zhao, J.Q. Zhang, C.N. Cao, J. Power Sources, 143, 243 (2005).

[16] X.Y.Wang, H. Luo, H.P. Yang, P.J. Sebastian, S.A. Gamboa, Int. J. Hydrogen Energy, 29, 967 (2004).

[17] C. Delmas, C. Tessier, J. Mater. Chem., 7, 1439 (1997).

[18] M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich, J. of Power Sources, 63, 247 (1996).

[19] A.A. Kamnev, Electrochim. Acta, 41, 267 (1996).

[20] L. Indira, M. Dixit, P.V. Kamata, Journal of Power Sources 52, 93 (1994).

[21] X.X. Yuan, Y.D. Wang, F. Zhang, J. Mater. Sci. Technol.17, S119 (2001).

[22] M. Oshitani, M. Watada, K. Shodai, M. Kodama, J. Electrochem. Soc.148 A67 (2001).

[23] R. Barnard, C. Randell, and F.L. Tye, Power Sources, Academic Press, London 8, 401 (1981).

[24] C. Tessier, P.H. Haumesser, P. Bernard, and C. Delmas, J. Electrochem. Soc. 146, 2059 (1999).

[25] A.M. Bond, S. Fletcher, P.G. Symons, Analyst 123, 1891 (1998).