High Surface Area Lithium Titanate Electrode for Li-ion Batteries

High Surface Area Lithium Titanate Electrode for Li-ion Batteries

Nishant M. Tikekar John J. LannuttiRamchandra Rao Revur Suvankar Sengupta 

Department of Materials Science and Engineering, 448 MacQuigg Labs, 105 W Woodruff Avenue, Ohio State University, Columbus OH 43210

Metamateria Technologies, 1275 Kinnear Road, Columbus OH 43212

Corresponding Author Email: 
lannuttj@matsceng.ohio-state.edu
Page: 
265-270
|
DOI: 
https://doi.org/10.14447/jnmes.v15i4.42
Received: 
30 November 2011
|
Accepted: 
9 January 2012
|
Published: 
11 April 2012
| Citation
Abstract: 

A lithium titanate (Li4Ti5O12) anode composed of submicron fibers with nanosize grains was fabricated by electrospinning from spin dopes prepared from nanoparticles of lithium titanium oxide (Li4Ti5O12) and polyvinylpyrolidone (PVP) in a solvent. Optimal electrospinning conditions and solvent composition that could be electrospun into fibers under a variety of ambient conditions were determined. Pyrolyzing the electrospun fibers at high temperatures (700°C for 5 hours in air) and plasma-treating in oxygen (500 m Torr for 30 m) revealed a nano-size grain structure within the individual fibers. Electrochemical testing with metallic lithium as a reference electrode displayed promising capacities for three charging cycles. The C rates displayed complete charging when the charging time was at least 10 minutes. However, faster charging resulted in a loss of capacity to as low as 50% when charged in less than three minutes. This degradation appears to be triggered by trace amounts of a secondary phase introduced by standard purity precursors used for preparing lithium titanate. Evidence for this was found using x-ray fluorescence revealing the presence of iron and silicon oxides.

Keywords: 

lithium titanate, Li-ion battery, electrospinning, surface area

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This material is based upon work supported by the National Sci-ence Foundation Grant Nos. IIP-0930626 and EEC-0425626. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the National Science Foundation.

  References

[1] W.J. Zhang, J. Power Sources, 196, 13 (2011).

[2] U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources, 163, 1003 (2007).

[3] C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev., 39, 3115 (2010).

[4] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).

[5] S.Y. Chung, J.T. Bloking, Y.M. Chang, Nature Materials, 1, 123 (2002).

[6] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochemical Society, 148, A224 (2001).

[7] J.W. Fergus, J. Power Sources, 195, 939 (2010).

[8] H.W. Lu, L. Yu, W. Zeng, Y.S. Li, Z. W. Fu, Electrochemical and Solid-State Letters, 11, A140 (2008).

[9] Z.W. Fu, J. Ma, Q.Z. Qin, Solid State Ionics, 176, 1635 (2005).

[10] J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chemical Re-views, 104, 4463 (2004).

[11] R.W. Hart, H.S. White, B. Dunn, D.R. Rolison, Electrochemis-try Communications, 5, 120 (2003).

[12] C.L. Wang, L. Taherabadi, G.Y. Jia, M. Madou, Y.T. Yeh, B. Dunn, Eletrochemical & Solid-State Letters, 7, A435 (2004).

[13] Baure G, Kown C, Lee G, Chamran F, Kim C, Dunn B, Micro-power and Microdevices, v. PV 2002-25, The Electrochem. Soc. Proc. Series, Pennington, NJ, 2003.

[14] J.C. Lytle, H.W. Yan, N.S. Ergang, W.H. Smyrl, A. Stein, J. Mater. Chem., 14, 1616 (2004).

[15] A. Stein, R.C. Schroden, Solid State and Materials Science, 5, 553 (2001).

[16] D. Li, Y.N. Xia, Nano Letters, 3, 555 (2003).

[17] H.W. Lu, W. Zeng, Y.S. Li, Z.W. Fu, J. Power Sources, 164, 874 (2007).

[18] Tikekar N., Lannutti J., Revur R., Sengupta S., Unpublished results.

[19] Tikekar N., & Lannutti J., Ceramics Interntional, in press.

[20] C.C. Chen, K.-F. Chiu, K.M. Lin, H.C. Lin, C.-R. Yang, F.M. Wang, Physica Scripta, T129, 74 (2007).

[21] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature, 407, 499 (2000).

[22] I. Belharouak, G. Koenig Jr., K. Amine, J. Power Sources, 196, 10344 (2011).

[23] N. Sinha, N. Minuchandraiah, J. Solid State Electrochem., 12, 1619 (2008).

[24] B. Hwang, R. Santhanam, D. Liu, J. Power Sources, 97, 443 (2001).

[25] J. Chen, L. Yang, S. Fang, S. Hirano, K. Tachibana, J. Power Sources, 200, 59 (2012).

[26] B. Tian, H. Xiang, L. Zhang, H. Wang, J. Solid State Electro-chemistry, 16, 205 (2012).

[27] K. Mukai, K. Ariyoshi, T. Ohzuku, J. Power Sources, 146, 213 (2005).

[28] H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian, R, Wang, Electro-chimica Acta, 53, 7079 (2008).

[29] J. Wolfenstine, J. Allen, J. Power Sources, 180, 582 (2008).

[30] M. Ganesan, Ionics, 14, 395 (2008).