Nanoporous Carbon Sponge as the Anode Materials for Lithium Ion Batteries

Nanoporous Carbon Sponge as the Anode Materials for Lithium Ion Batteries

Lianna Dang Qina Sa Zhangfeng Zheng Yan WangShenqiang Ren

University of Kansas, Department of Chemistry, Lawrence, KS 66045

Worcester Polytechnic Institute, Department of Mechanical Engineering, Worcester, MA 01609

Corresponding Author Email: 
yanwang@wpi.edu, shenqiang@ku.edu
Page: 
233-236
|
DOI: 
https://doi.org/10.14447/jnmes.v15i4.35
Received: 
18 March 2012
|
Accepted: 
30 March 2012
|
Published: 
11 April 2012
| Citation
Abstract: 

Lithium ion battery is the choice for future generations of portable electronics and hybrid and electric vehicles due to its high energy density, power density and long cycle life compared to other battery technologies. However, current graphite anode limits its application due to the low energy density derived from layered graphitic structure and low rate capability due to the slow diffusion of Li ion in graphite. In this study, a simple and versatile approach was developed to generate nanoporous carbon sponge using the combination of hard templating and etching reaction. The electrochemical properties have been tested with these novel anode materials, which showed remarkable electrochemical performance and cycling stability. Therefore, the nanoporous carbon sponge is promising to be used as the anode materials for next generation lithium ion batteries requiring high energy density and power density.

Keywords: 

lthium ion batteries, nanoporous carbon sponge, charging and discharging

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors thank the University of Kansas and Worcester Poly-technic Institute for its startup financial supporting, Qina Sa ac-knowledge the financial support from Helen E. Stoddard Fellow-ship, and the support of the Microscopy and Analytical Imaging Laboratory at the University of Kansas for SEM and TEM charac-terizations.

  References

[1] Winter, M., Besenhard, J.O., Spahr, M.E., Novak P., Adv. Ma-ter., 10, 725 (1998).

[2] Kang, B., Ceder G., Nature, 458, 190 (2009).

[3] Tarascon J.M., Armand M., Nature, 414, 359 (2001).

[4] Subramoney S., Adv. Mater., 10, 1157 (1998).

[5] Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F and Smalley R.E., Nature, 318 162 (1985).

[6] Hu Z., Srinivasan M.P., Ni Y., Adv. Mater., 12, 62 (2000).

[7] Sato K., Noguchi M., Demachi A., Ok N. and Endo M., Sci-ence, 264, 556 (1994).

[8] Shiflett M.B., Foley H.C., Science, 285, 1902 (1999).

[9] Kyotani T., Nagai T., Inoue S., Tomita A., Chem. Mater., 9, 609 (1997).

[10] Lee J., Yoon S., Hyeon T., Oh S.M., Kim K.B., Chem. Com-mun., 21, 2177 (1999).

[11] Impéror-Clerc M., Davidson P., Davidson A.J., Am. Chem. Soc., 122, 11925 (2000).

[12] Joo S.H., Choi S.J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R., Nature, 412, 169 (2001).

[13] Kruk M., Jaroniec M., Kim T.-W., Ryoo R., Chem. Mater., 15, 2815 (2003).

[14] Fan J., Yu C., Wang L., Tu B., Zhao D., Sakamoto Y., Terasaki Y.O., J. Am. Chem. Soc., 123, 12113 (2001).

[15] Guo B., Wang X., Fulvio P.F., Chi M., Mahurin S.M., Sun X- G. and Dai S., Adv. Mater., 23, 4661 (2011).

[16] Ota H., Sakata Y., Inoue A. and Yamaguchi S., J. Electrochem. Soc., 151, A1659 (2004).

[17] Komaba S., Itabashi T., Kaplan B., Groult H., Kumagai N., Electrochemistry Communications, 5, 962 (2003).

[18] Methekar R.N., Northrop P.W.C., Chen K., Braatz R.D. and Subramanian V.R., J. Electrochem. Soc., 158, A363 (2011).

[19] Lai W., Erdonmez C.K., Marinis T.F., Bjune C.K., Dudney N.J., Xu F., Wartena R. and Chiang Y.-M., Adv. Mater., 22, E139 (2010).

[20] Dahn J.R., Zheng T., Liu Y.H., Xue J.S., Science, 270, 590 (1995).

[21] Yang J., Winter M., Besenhard J.O., Solid State Ionics, 90, 281 (1996).

[22] Bonino F., Brutti S., Reale P., Scrosati B., Gherghel L., Wu J., Mullen K., Adv. Mater., 17, 743 (1995).