Production of Hydrogen from Ethanol Using Pt/Hydrotalcite Catalysts Stabilized with Tungsten Oxides

Production of Hydrogen from Ethanol Using Pt/Hydrotalcite Catalysts Stabilized with Tungsten Oxides

J.L. ContrerasM.A. Ortiz R. Luna G.A. Fuentes M. Autié J. Salmones  B. Zeifert M. Gordon T. Vázquez 

Universidad Autónoma Metropolitana-Azcapozalco CBI, Energía, Av. Sn.Pablo 180 Col.Reynosa C.P.02200 México D.F.

Universidad Autónoma Metropolitana-Iztapalapa CBI, IPH, México, D.F.

Instituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, La Habana, Cuba and Facultad de Ingeniería Química.Instituto Superior Politécnico José Antonio Echeverria, FQB-MES.La Habana Cuba

Instituto Politécnico Nacional, ESIQIE, Unidad Prof. ALM, México, D. F., 07738

Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, México, D.F.

Corresponding Author Email: 
jlcl@correo.azc.uam.mx
Page: 
215-223
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.68
Received: 
25 November 2011
|
Accepted: 
10 February 2012
|
Published: 
16 April 2012
| Citation
Abstract: 

An stabilization effect of WOx over the Pt/hydrotalcite catalysts to produce H2 by ethanol steam reforming at low concentration was studied. The catalysts were characterized by N2 physisorption, X-ray diffraction, Infrared (IR), and UV-vis spectroscopy. The catalytic tests were made in a fixed bed reactor. The catalysts showed porous with the shape of parallel layers with a monomodal mesoporous distribution. By IR spectroscopy it was found superficial chemical such as: -OH, H2O, Al-OH, Mg-OH, and CO32-. The reaction products were; H2, CO2, CH3CHO, CH4 and C2H4. These catalysts did not produce CO and showed low selectivity to C2H4. By XRD we found that catalysts having Pt and the lowest W concentration showed the highest crystallinity and the highest stability during the reaction of ethanol steam reforming. A possible thermal stabilization effect of W in the hydrotalcite crystal structure leading to prevent the Pt sintering is proposed. By IR the hydrotalcite hydroxil groups coordinated with Mg and Al decreased by the presence of WOx. We found that catalysts with low W concentration and Pt having high crystallinity showed the highest stability after ethanol steam reforming. It could be a possible thermal stabilization effect of W in the hydrotalcite crystal structure leading to prevent the Pt sintering.

Keywords: 

hydrogen, WOx, Hydrotalcite, catalysts, platinum, ethanol

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors acknowledge the financial support of the Universidad Autónoma Metropolitana-Azcapotzalco, Iztapalapa, the Instituto Politécnico Nacional and the Instituto Mexicano del Petróleo.

  References

[1] F. Aupretre, C.Descorme, D.Duprez, D.Casanave.D. Uzio, J. Catal., 233, 464 (2005).

[2] E.Y. García, M.A. Laborde, Int. J. Hydrogen Energy, 16, 307 (1991).

[3] K. Vasudeva, N. Mitra P., S. Umasankar, C. Dhingra, Int. J. Hydr. Energy, 21, 13 (1996).

[4] Fishtik, R. Alexander, R. Datta, R.D. Geana, Int. J. Hydrogen Energy, 25, 31 (2000).

[5] S. Freni, G. Maggio, S. Cavallaro, J. Power Sources, 62, 67 (1996).

[6] J.P. Breen, R. Burch, H.M. Coleman, Appl. Catal. B:Environ, 39, 65 (2002).

[7] N. Laosiripojana, S. Assabumrungrat. Appl. Catal. B:Environ, 669, 29 (2006).

[8] F. Frusteri, S. Freni, V. Spadaro, Chiodo, G. Boura, S. Donato, S. Carvallo, Catal. Commun., 5, 611 (2004).

[9] N. Homs, J. Llorca, P.Ramírez de la Piscina, Catal. Today, 116, 361 (2006).

[10] J. Llorca, N. Homs, J. Salts, P.Ramírez de la Piscina, J. of Catal., 209, 306 (2002).

[11] J. Sun, P. Xin, W.Q. Feng, Int. J. Hydrogen Energy, 30, 437 (2005).

[12] C. Diagne, H. Idriss, A. Kiennemann, Catal. Communications, 3, 565 (2002).

[13] C.L. Hernández and V. Kafarov. Proceedings of Simposio Iberoamericano de Catálisis Anais do XXSICAT, FISOCAT, Gramado Brazil, Sept 17-22. p1-8, 2006.

[14] V. Mas, M.L. Dieuzeide, R. Tejeda, M. Jobbagy, G. Baronetti, N. Amadeo, M. Laborde, Proceedings of Simposio Iberoamericano de Catálisis. Anais do XX SICAT –FISOCAT, Gramado, Brazil, Sept. 17-22, 2006.

[15] J.L. Contreras, J. Salmones, L.A. García, A. Ponce, B. Zeifert and G.A. Fuentes, J. of New Materials for Electrochemical Systems, 11, 109 (2008).

[16] J.L. Contreras, G.A. Fuentes, J. Salmones, B. Zeifert, J. of Alloys and Compounds, 483, 371 (2009).

[17] J.L. Contreras, G.A. Fuentes, J. Salmones, B. Zeifert. Mater. Res. Soc. Symp. Proc. Vol. 1279, Materials Research Society, 123 (2010).

[18] L. Liu, D. Chen, K. Zhang, J. Li, N. Shao, Int. J. of Hydrogen Energy, 33, 3736 (2008).

[19] L.J.I. Coleman, W. Epling, R.R. Hudgins, E. Croiset, Appl. Catal., A:General, 363, 52 (2009).

[20] L. He, H. Berntsen, De Chen, J. of Phys. Chem., A, 114, 3834 (2010).

[21] A.F. Lucrédio, J.D.A. Bellido, E.M. Assaf, Appl. Catal., A:General, 388, 77 (2010).

[22] G. Zeng, Q. Liu, R. Gu, L. Zhang, Y. Li, Catal. Today, (2011).

[23] R. Guil-López, R.M. Navarro, M.A. Peña, J.L.G. Fierro, Int. J. of Hydrogen Energy, 36, 1512 (2011).

[24] J. Llorca, N. Homs, P. Ramírez de la Piscina, J. of Catal., 227, 556 (2004).

[25] C. Resini, T. Montanari, L. Barattini, G. Ramis, G. Busca, S. Presto, P. Riani, R. Marazza, M. Sisani, F. Marmottini, U. Costantino, Appl. Catal. A:General, 355, 83 (2009).

[26] H. Vieira F., L.F. Dias P., Appl. Catal. A:General, 306, 134 (2006).

[27] N. Laosiripojana and S. Assabumrungrat, Appl. Catal. B:Environmental, 66, 29 (2006).

[28] J. Comas, F. Mariño, M. Laborde, N. Amadeo. Chem. Eng. J. 98, 61 (2004).

[29] Erdohelyi, J. Rasko, T. Kecskes, M. Toth, M. DömÖk, K. Baán, Catal. Today, 116, 367 (2006).

[30] J.R. Rostrup-Nielsen, N. Hojlund in: J. Oudar, H. Wise (Eds.), Deactivation and Poisoning of Catalyst, Marcel Dekker, New York, Basel, p.57, 1985.

[31] J.L. Contreras, M.A. Ortiz, G.A. Fuentes, R. Luna, J. Salmones, B. Zeifert, L. Nuño and A.Vázquez, J. of New Materials for Electrochemical Systems, 13, 253 (2010).

[32] T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, K. Takehira, Catal. Lett., 73, 21 (2001).

[33] A.C.C. Rodríguez, C.A. Enríquez, J.L.F. Monteiro, Mater. Res., 6, 563 (2003).

[34] S. Hamada, S. Hibarino, K. Ikeue, M. Machida, Appl. Catal. B: Environmental, 74, 197 (2007).

[35] F. Basile, G. Fornasari, M. Gazzano, A. Vaccari, Appl. Clay. Sci., 16, 185 (2000).

[36] I.O. Cruz, N.F.P. Ribeiro, D.A.G. Aranda, M.M.V.M. Souza, Catalysis Comm., 92606, 2611 (2008).

[37] María de los Ángeles Ocaña Zarceño, Síntesis de Hidrotalcitas y Materiales Derivados: Aplicaciones en Catálisis Básica. Tesis de Doctorado, Universidad Complutense de Madrid (2005).

[38] Bartecki and Dembicka, D.J. of Inorg. and Nuclear Chem. 29, 2907 (1967).

[39] J.L. Contreras and G.A. Fuentes, Studies in Surface Science and Catalysis, Vol.101 Edit. B. Delmon and J.T. Yates, Elsevier, 1195 (1996).

[40] Iannibello, L. Villa and S. Marengo, Gazzetta Chimica Italiana, 109, 521 (1979).

[41] L. Salvati, L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules, J. Phys. Chem., 85, 3700 (1981).

[42] J.A. Horsley, I.E. Wach, J.M. Brown, G.H. Via, F.D. Hardcastle, J. Phys. Chem., 91, 4014 (1987).

[43] W.P. Griffith and T.D. Wickins, J. Chem. Soc., A., 1087 (1966).

[44] Jackson, S.D. Glanville, B.M. Willis, J. McLellan, G.D. Webb, G, Moyes, R.B., Journal of Catal., 207 (1993).

[45] Lever A.B.P., “Inorganic Electronic Spectroscopy”,2nd. Ed., Sud. Phys. Theor. Chem.33, Elsevier, Amsterdam, 1984.

[46] Lietz G., Lieske H., Spindler H., Hanke W. and Volter J., J. of Catal., 81, 17 (1983).