Comparison of Various Techniques to Characterize a Single Chamber Microbial Fuel Cell Loaded with Sulfate Reducing Biocatalysts

Comparison of Various Techniques to Characterize a Single Chamber Microbial Fuel Cell Loaded with Sulfate Reducing Biocatalysts

K. Sathish Kumar Omar Solorza-Feria Rafael Hernández-Vera Gerardo Vazquez-Huerta Héctor M. Poggi-Varaldo

Doctoral Program of Nanoscience and Nanotechnology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico D.F.

Depto. Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F.

Depto. Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, México D.F.

Current address: Depto. de Energía, Universidad Autónoma Metropolitana-A, México D.F.

Corresponding Author Email: 
hectorpoggi2001@gmail.com
Page: 
195-201
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.65
Received: 
25 November 2011
|
Accepted: 
2 February 2012
|
Published: 
2 April 2012
| Citation
Abstract: 

A single-chamber microbial fuel cell (SCMFC) with a carbon supported Pt-cathode for the oxygen reduction reaction (ORR), and loaded with a sulfate reducing bacterial consortium as biocatalyst in the anodic chamber was characterized by polarization by variable resistance (VR) and linear sweep voltammetry (LSV) methods. From VR a whole cell configuration maximum volumetric power of 92.5 mW m-3 was attained at a current density of 459 A m-3 and voltage of 0.202 V. The LSV method of whole cell configuration gave a higher maximum power density of 197.5 mW m-3 at current density of 696 mA m-3 at the potential of 0.284V; this disagreement was ascribed to possible reduction of power and potential overshoot with the LSV. There was a fair agreement between internal resistance values of whole cell configuration determined by VR and electrochemical impedance spectroscopy (EIS): 2225 and 2307 Ω , respectively. Yet, internal resistance measured by LSV was 30% lower for the whole cell configuration. Both LSV and EIS show the advantage of reduced potential overshoot; yet, EIS provides more detailed information on equivalent circuit of the cell and resistance contributions of the electrodes, electrolyte and membrane. Further cyclic voltammetry tests gave midpoint potential of -0.215 V vs saturated calomel electrode, a value close to those reported for bacterial cytochromes involved in extracellular electron transfer processes. It is concluded that in spite of particular advantages of some techniques over others, the combination of electrochemical methods can be very valuable for shedding light and internal checking of the main characteristics of a microbial fuel cell.

Keywords: 

internal resistance, linear sweep voltammetry, microbial fuel cell, polarization, sulfate-reducing bacteria

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors wish to thank the careful reading of our MS and suggestions of the Editor-in-Chief and Referees of the JNMES. The insightful comments of the Editor of the Scientific Committee of the 11th Int. Conf. of the SMH as well as anonymous Reviewers of the Mexican Society for Hydrogen are gratefully acknowledged. One of the authors (KS-K) thanks SEP and CINVESTAV for scholarship support. Excellent technical help of personnel of Fuel Cell Group (Dept. of Chemistry) and Environmental Biotechnology and Renewable Energies Group (Dept. of Biotechnology and Bio-engineering), both of CINVESTAV del IPN, is appreciated. Partial financial support to this research was provided by ICYTDF and CINVESTAV del IPN.

  References

[1] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

[2] H.M. Poggi-Varaldo, A.L. Vazquez-Larios, O. Solorza-Feria, Capítulo 7. Celdas de combustible microbianas. In: Rodríguez-Varela FJ, Solorza-Feria O, Hernández-Pacheco E (Editores). Celdas de combustible. 2010. Ed. Books Livres, Montréal, Canadá. pp 123-161. ISBN 978-0-9809915-2-9.

[3] D. Halliday, R. Resnick, J. Walker, In: Fundamentals of Phys-ics. 7th ed.. New York: John Wiley & Sons Co., ISBN 978-0-471-21643-8; 2004.

[4] A.L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, E. Rios-Leal, N. Rinderknecht-Seijas and H.M. Poggi-Varaldo, J. New Mat. Electrochem Systems, 14(2), 99-105 (2011).

[5] H. Liu, S. Cheng, B.E. Logan, Environ. Sci. Technol., 39, 5488 (2005).

[6] B. Min, S. Cheng, B.E. Logan, Water Research, 39, 1675 (2005).

[7] A.L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, F. Esparza-Garcıa, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, Int. J. Hydrogen energy, 36, 6209 (2011).

[8] W. Habermann, E.H. Pommer, Appl. Microbiol. Biotechnol. 35, 128 (1991).

[9] M.J. Cooney, E. Roschi, I.W. Marison, Ch. Comninellis, U. Stockar, Enzyme Microb. Technol. 18, 358 (1996).

[10] A.L. Vázquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, H.M. Poggi-Varaldo, Capítulo 11. Determinación de la resis-tencia interna de una celda de combustible microbiana de nue-vo tipo con dos métodos de caracterización. In: Ríos-Leal E, Solorza-Feria O, Poggi-Varaldo HM (Editores). Energías Reno-vables Biológicas – Hidrógeno - Pilas de combustible- II. 2010. ISBN 978-607-00-3608-8. CINVESTAV del IPN e ICYTDF. México D.F., México. pp. 159-167. Book in CD-ROM.

[11] Y. Zuo, S. Cheng, D. Call, B. E. Logan, Environ. Sci. Technol., 41, 3347 (2007).

[12] J. Menicucci, H. Beyenal, E. Marsili, Veluchamy, G. Demir, Z. Lewandowski, Environ. Sci. Technol., 40, 1062 (2005).

[13] D. Posadas. Introduccion a la electroquimica; Monograph No. 22, Series of Chemistry. de la Organización de los Estados Americanos, Washington, D.C. 1980.

[14] S.B. Velasquez-Orta, T.P. Curtis, B.E. Logan, Biotechnology and Bioengineering, 103, 1068 (2009).

[15] P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environmental Science & Technology, 40, 3388 (2006).

[16] J.R. Kim, G.C. Premier, F.R. Hawkes, J. Rodríguez, R.M. Dinsdale, A.J. Guwy, Bioresource Technology, 101, 1190 (2010).

[17] I. Ieropoulos, J. Winfield, J. Greenman, Bioresource Technol-ogy, 101, 3520 (2010).

[18] P. Clauwaert, K. Rabaey, P. Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, W. Verstraete, Environ. Sci. Technol, 41, 3354 (2007).

[19] A.P. Borole, D. Aaron, C.Y. Hamilton, C. Tsouris, Environ. Sci. Technol., 44, 2740–2745 (2010).

[20] V.J. Watson, B.E. Logan, Electrochem Communi, 13, 54 (2011).

[21] A.K. Manohar, F. Mansfeld, Electrochimica Acta, 54, 1664 (2009).

[22] M.T. Madigan, Martinko, J.M., P.V. Dunlap, D.P. Clark. Brock Biology of Microorganisms, 12th edn, Pearson Education Inc. 2009.

[23] A.K. Manohar, O. Brestschger, K.H. Nealson, F. Mansfeld, Electrochemica Acta, 53, 3508 (2008).

[24] C. Aubert, E. Lojou, P. Bianco, M. Rousset, M-C, Durand, M. Bruschi, A. Dolla, Appl. Environ. Microbiol, 64, 1308 (1998).