Parallel Connection and Sandwich Electrodes Lower the Internal Resistance in a Microbial Fuel Cell

Parallel Connection and Sandwich Electrodes Lower the Internal Resistance in a Microbial Fuel Cell

Areli Ortega-Martínez Katy Juárez-López Omar Solorza-Feria María T. Ponce-Noyola Elvira Ríos-Leal Noemí F. Rinderknecht-Seijas Héctor M. Poggi-Varaldo

Environmental Biotechnology and Renewable Energies R&D Group, Dept. Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N. – Instituto Politécnico Nacional, México D.F.

Dept. Ingenieria Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor.

Dept. of Chemistry, Centro de Investigación y de Estudios Avanzados del I.P.N.– Instituto Politécnico Nacional, México D.F.

Microbial Genetic Group., Dept. of Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N.– Instituto Politécnico Nacional, México D.F.

Central Analitica, Dept. of Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N.– Instituto Politécnico Nacional, México D.F.

Escuela Superior de Ingeniería Química e Industrias Extractivas – Instituto Politécnico Nacional, México D.F.

Corresponding Author Email: 
hectorpoggi2001gmail.com
Page: 
187-194
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.64
Received: 
5 December 2011
|
Accepted: 
1 February 2012
|
Published: 
2 April 2012
| Citation
Abstract: 

The aim of this work was to design and characterize a novel, multiface parallelepiped MFC in the perspective of decreasing the internal resistance (Rint) and increasing the volumetric power (Pv) output. The cell was fitted with a ‘sandwich’ cathode-membrane-anode assemblage in five of its faces, and possessed a ratio electrode surface area-to-volume ξ (csi) of 19 m-1 . When the 5 faces of the MFC-P were connected in series, the Rint was 601 Ω with a voltage of 0.52 V. Characterization of the cell with the 5 faces connected in parallel gave a Rint of 62 Ω with a voltage of 0.5 V that corresponded to external resistance of 56 k Ω in the polarization procedure. This result was ascribed to both the changes in cell architecture and decrease of the inter-electrode distance as well as the parallel connection. The Pv of the new MFC-P achieved values of 62 and 570 mW/m3 for series and parallel connection, respectively. Molecular ecological techniques were used to analyze the bacterial diversity of biocatalyst used in new design MFC-P. They showed a low species richness and low-to-moderate evenness. The community consisted primarily of δ-Proteobacteria and Firmicutes, bacteria that are recognized to be capable of exocellular electron transfer.

Keywords: 

internal resistance, microbial fuel cell, parallel. parallepiped, series

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

The authors wish to thank the Editors and Referees of JNMES, as well as the Chair and Referees of the Publications Committee of the SMH, for their careful reading of our MS and their insightful comments. CINVESTAV-IPN and ICYTDF, Mexico provided financial support to this reserch. Areli del C. Ortega-Martinez re-ceived a graduate scholarship from CONACYT, Mexico. The ex-cellent technical help with molecular biology analysis of Ms Ana Lilia Tirado-Chamú (BSBiochemEng) from IBT-UNAM, and personnel of Environmental of Biotechnology and Renewable En-ergy R&D Group CINVESTAV-IPN is appreciated. Dr. Gerardo Vazquez-Huerta from the Fuel Cell and Hydrogen Group assisted with the EIS determinations.

  References

[1] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

[2] H.M. Poggi-Varaldo, A. Carmona-Martínez, A.L. Vázquez-Larios, O. Solorza-Feria, J. New Mat. Electrochem. Systems, 12, 49 (2009).

[3] Z. Du, H. Li, T. Gu, Biotechnol. Adv., 25, 464 (2007).

[4] H.M. Poggi-Varaldo, A. L. Vazquez-Larios, O. Solorza-Feria. “Celdas de Combustible Microbianas”. Ed. F.J. Rodriguez-Varela, O. Solorza-Feria, E. Hernandez-Pacheco, Canada , 2010, p. 123.

[5] A.L. Vazquez-Larios, G. Vazquez Huerta, F. Esparza-Garcia, E. Rios-Leal, O. Solorza-Feria, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 13, 219 (2010).

[6] H. Rismani-Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, J. Power Sources, 180, 683 (2008).

[7] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cells fundamentals”, John Wiley & Sons. New York, USA, 2005 p. 409.

[8] G.W. Castellan, “Physical Chemistry”, Addison-Wesley Publ. Co., MA, USA, 1966 p.581.

[9] Y.Z. Fan, H.Q. Hu, H. Liu, J. Power Sources, 171, 348 (2007).

[10] J.K. Jang, T.H. Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho, B.H. Kim, Process Biochem., 39, 1007 (2004).

[11] J.R. Kim, S. Cheng, S.E. Oh, B.E. Logan, Environ. Sci. Technol., 41, 1004 (2007).

[12] T. Song, Y. Xu, Y. Ye, Y. Chen, S. Shen, J. Chem, Technol. Biotechnol., 84, 356 (2008).

[13] H. Liu, S.A. Cheng, B.E. Logan, Environ. Sci. Technol., 39, 5488 (2005).

[14] D.Q. Jian, B.K. Li, Water Sci. Technol., 59(3), 557 (2009).

[15] Valdez-Vazquez, E. Ríos-Leal, F. Esparza-García, F. Cecchi, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 30, 1383 (2005).

[16] H.M. Poggi-Varaldo, L. Valdés, F. Esparza-García, G. Fernandéz-Villagómez, Water Sci. Technol., 35, 197 (1997).

[17] R. Sparling, D. Risbey, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 22, 563 (1997).

[18] P. Clauwaert, K. Rabaey, P. Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, W. Verstraete, Environ. Sci. Technol., 41, 3354 (2007).

[19] APHA, “Standard Methods for the Examination of Water and Wastewater”, 17th edn., American Public Association, Washington DC, USA, 1989.

[20] W.G. Weisburg, S.M. Barns, D.A. Pelletier, D.J. Lane, J. Bacteriol., 173, 697 (1991).

[21] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, J. Mol. Biol., 215, 403 (1990).

[22] Y. Kim, M.C. Hatzell, A.J. Idutchinson, B.E. Logan, Energy Environ. Sci., 4, 4662 (2011).

[23] P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 40, 3388 (2006).

[24] S.E. Oh, B.E. Logan, J. Power Sources, 167, 11 (2007).

[25] S.H. Shin, Y. Choi, S.H. Na, S. Jung, S. Kim, Bull. Korean Chem. Soc., 27, 281 (2006).

[26] B. Wang, J.I. Han, Biotechnol. Lett. 312, 387 (2009).

[27] H. Liu, S. Cheng, L. Huang, B.E. Logan, J. Power Sources, 179, 274 (2008).

[28] Q. Deng, X. Li, J. Zuo, A. Liang, B.E. Logan, J. Power Sources, (2009).

[29] C.Y. Fung, J. Lee, I.S. Chang, B.H. Kim, J. Microbiol. Biotechnol., 16, 1481 (2006).

[30] N.T. Phung, J. Lee, K.H. Kang, I.S. Chang, G.M. Gadd, B.H. Kim, Microbiol. Lett. 233, 77 (2004).

[31] B.E. Logan, J.M. Regan, Trends in Microbiol., 14, 512 ( 2006).

[32] C.E. Shanon, Bell System Technical J., 27, 379 (1948).

[33] C.P.H. Mulder, E. Bazeley-White, P.G. Dimitrakopoulos, A. H., M. Scherer-Lorenzen, B. Schmid, “Species evenness and productivity in experimental plant communities”, Oikos, 104, 50 (2004).

[34] B.H. Kim, H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang, J. Lee, N.T. Phung, Appl. Microbiol. Biotechnol., 63, 672 (2003).

[35] G.T. Kim, M.S. Hyun, I.S. Chang, H.J. Kim, H.S. Park, B.H. Kim, S.D. Kim, J.W.T. Wimpenny, A.J. Weightman, J. Appl. Microbiol. 99, 978 (2005).

[36] D.R. Lovley, Curr. Opin. Biotechnol., 19, 564 (2008).

[37] D.R. Lovley, Nature Reviews Microbiol. 4, 497 (2006).

[38] C.A. Pham, S.J. Jung, N.T. Phung, J. Lee, I.S. Chang, B.H. Kim, H. Yi, J. Chun, Microbiol. Lett., 223, 119 (2003).

[39] D.E. Holmes, D.R. Bond, R.A. O´Neil, C.E. Reimers, L.R. Tender, D.R. Lovley, Microb. Ecol., 48, 178 (2004).