Electrical Stress-directed Evolution of Biocatalysts Community Sampled from A Sodic-saline Soil for Microbial Fuel Cells

Electrical Stress-directed Evolution of Biocatalysts Community Sampled from A Sodic-saline Soil for Microbial Fuel Cells

K. Sathish-Kumar Omar Solorza-FeriaGerardo Vázquez-Huerta J.P. Luna-Arias Héctor M. Poggi-Varaldo 

Doctoral Program of Nanoscience and Nanotechnology, CINVESTAV-IPN, Apartado Postal 14-740, 07360 México D.F.

Departamento de Química, CINVESTAV-IPN, Apartado Postal 14-740, 07360 México D.F.

Departamento de Biología Celular, CINVESTAV-IPN, Apartado Postal 14-740, 07360 México D.F.

Depto. Biotecnología y Bioingeniería, CINVESTAV-IPN, Apartado Postal 14-740, 07360 México D.F.

Corresponding Author Email: 
osolorza@cinvestav.mx
Page: 
181-186
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.63
Received: 
7 December 2011
|
Accepted: 
31 January 2012
|
Published: 
2 April 2012
| Citation
Abstract: 

Anode-respiring bacteria (ARB) perform an unusual form of respiration in which their electron acceptor is a solid anode. The focus of this study was to characterize the electrical stress direct evolution of biocatalysts as a way of enriching the community with ARB for microbial fuel cell. The original microbial consortium was sampled from a sodic-saline bottom soil (Texcoco Lake). Interestingly, iron (III) reducing bacteria consortium in the sodic-saline bottom soil was 8500 ± 15 MPN/100 mL by the most probable number method, since microbial reduction of iron (III) is reported to be associated to anode-respiring capabilities. Cyclic voltammetry studies of electrochemical stressed biofilm-ARB were conducted at 28th and 135th days, and an irreversible electron transfer reaction was found possibly related to electron transfer reaction of the cytochrome. The electrochemical impedance spectroscopy results revealed that the resistance of the biofilm-ARB decreased with time (28th day-11.11 ω and 135th day- 5.5 ω ), possibly associated to the adaptability of electroactive biofilm on the graphite electrode surface. Confocal microscopy showed that the biofilms are active in nature and the biofilm-ARB attained ~40 μ m thickness at the 136th day. Electrical stressed-ARB gave a maximum power density of 79.4mW/m2, and unstressed-ARB gave a maximum power density of 41.0mW/m2 in a single-chamber microbial fuel cell (SCMFC). All these electrochemical experiments and evaluation suggest that the electrical-stress directed evolution of ARB community was associated to a more efficient extracellular electron transfer process in SCMFC.

Keywords: 

anode-respiring bacteria, cyclic voltammetry, extra cellular electron transfer

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

KSK would like to thank SEP and CINVESTAV-IPN, for pro-viding him the Ph.D. fellowship. GVH acknowledges ICYTDF for the postdoctoral grant. This work was partially supported by ICYTDF (grant PICCO10-28), CONACYT (grand 101537) and CINVESTAV del IPN.

  References

[1] U. Schröder, J. Nießen, F. Scholz, Angewandte Chemie International Edition, 42, 2880 (2003).

[2] Y. Qiao, S.-J. Bao, C.M. Li, X.-Q. Cui, Z.-S. Lu, J. Guo, ACS Nano, 2, 113 (2007).

[3] Y. Qiao, C.M. Li, S.-J. Bao, Z. Lu, Y. Hong, Chem. Commun., 1290 (2008).

[4] K.-J. Chae, M.-J. Choi, K.-Y. Kim, F.F. Ajayi, W. Park, C.-W. Kim, I.S. Kim, Bioresource Technology, 101, 5350 (2010).

[5] Larrosa-Guerrero, K. Scott, K. Katuri, C. Godinez, I. Head, T. Curtis, Applied Microbiology and Biotechnology, 87, 1699 (2010).

[6] J.S. McLean, G. Wanger, Y.A. Gorby, M. Wainstein, J. McQuaid, S.i. Ishii, O. Bretschger, H. Beyenal, K.H. Nealson, Environ. Sci. Technol, 44, 2721 (2010).

[7] K.P. Katuri, K. Scott, I.M. Head, C. Picioreanu, T.P. Curtis, Bioresource Technology, 102, 2758 (2011).

[8] H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello, D.R. Lovley, Langmuir, 24, 4376 (2008).

[9] C.S.I. Torres, R. Krajmalnik-Brown, P. Parameswaran, A.K. Marcus, G. Wanger, Y.A. Gorby, B.E. Rittmann, Environ. Sci. Technol., 43, 9519 (2009).

[10] B. Erable, M.A. Roncato, W. Achouak, A. Bergel, Environ. Sci. Technol., 43, 3194 (2009).

[11] H. Yi, K.P. Nevin, B.-C. Kim, A.E. Franks, A. Klimes, L.M. Tender, D.R. Lovley, Biosensors and Bioelectronics, 24, 3498 (2009).

[12] S. Srikanth, S. Venkata Mohan, P.N. Sarma, Bioresource Technology, 101, 5337 (2010).

[13] M.R. Mormile, M.F. Romine, M.T Garcia, A. Ventosa, T.J. Bailey, B.M. Peyton, Syst Appl Microbiol., 22, 551 (1999).

[14] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

[15] D.R Lovley and E.J.P Philips, Appl. Environ. Microbiol., 51 (4), 683 (1986).

[16] D.B. Hicks, T.A. Krulwich, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1229, 303 (1995).

[17] R.J. Lewis, R.C. Prince, P.L. Dutton, D.B. Knaff, T.A. Krulwich, Journal of Biological Chemistry, 256, 10543 (1981).

[18] M.W. Davidson, K.A. Gray, D.B. Knaff, T.A. Krulwich, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 933, 470 (1988).

[19] M. Kitada, R.J. Lewis, T.A. Krulwich, J. Bacteriol., 154, 330 (1983).

[20] Yumoto, Y. Fukumori, T. Yamanaka, Journal of Biochemistry, 110, 267 (1991).

[21] D.E. Reed, F.M. Hawkridge, Analytical Chemistry, 59, 2334 (1987).

[22] C.I. Torres, A.K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B.E. Rittmann, FEMS Microbiology Reviews, 3, 34 (2010).

[23] Zhen He and Florian Mansfeld, Energy Environ. Sci., 2, 215, (2009).

[24] Peter Aelterman, Stefano Freguia, Jurg Keller,Willy Verstraete, Korneel Rabaey, Appl. Microbiol Biotechnol., 78, 409 (2008).

[25] H.M.Poggi-Varaldo, A.L. Vazquez-Larios, O. Solorza-feria, “Celdas de combustible microbianas” Ed. F.J. Rodriguez-Varela, O.Solorza-Feria, E.Hernandez –Pacheco. Canada, 2010. p123.

[26] F.P. Yu, G.A. McFeters, Journal of Microbiological Methods, 20, 1 (1994).

[27] H.-S. Lee, C.S.I. Torres, B.E. Rittmann, Environ. Sci. Technol., 43, 7571 (2009).

[28] L. Miller, R. Oremland, Extremophiles, 12, 837 (2008).

[29] M. Liu, Y. Yuan, L.-x. Zhang, L. Zhuang, S.-g. Zhou, J.-r. Ni, Bioresource Technology, 101, 1807 (2010).

[30] M. Behera, P.S. Jana, T.T. More, M.M. Ghangrekar, Bioelectrochemistry, 79, 228 (2010).

[31] J. Biffinger, M. Ribbens, B. Ringeisen, J. Pietron, S. Finkel, K. Nealson, Biotechnology and Bioengineering, 102, 436 (2009).