An Easy Route to Synthesize Novel Fe3O4@Pt Core-shell Nanostructures with High Electrocatalytic Activity

An Easy Route to Synthesize Novel Fe3O4@Pt Core-shell Nanostructures with High Electrocatalytic Activity

Nora Mayté Sánchez-Padilla Sagrario M. MontemayorF.J. Rodríguez Varela

Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila, México, CP 25280

Grupo de Recursos Naturales y Energéticos, CINVESTAV Unidad Saltillo, Carr. Saltillo-Monterrey km. 13.5, Ramos Arizpe, Coahuila, México, CP 25900

Corresponding Author Email: 
smmontemayor@gmail.com, javier.varela@cinvestav.edu.mx
Page: 
171-179
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.62
Received: 
20 December 2011
| |
Accepted: 
13 February 2012
| | Citation
Abstract: 

In this work, the effect of changing the stirring method and temperature on the physicochemical properties of metallic nanoparticles and core-shell nanostructures is shown. Magnetic (MS), mechanical (UT) and ultrasonic (USS) stirring are the methods of synthesis. The effect that, temperatures between 0 and 50 °C, has on the structure and particle size of Fe3O4nanoparticles is evaluated. The results indicate that Fe3O4prepared by the three methods presents a spinel-type crystalline structure. An increase in the synthesis temperature leads to highly crystalline powders. Afterwards, Pt is deposited by the UT method on Fe3O4 to form Fe3O4@Pt core-shell nanostructures. It is important to mention that the time used for the synthesis of the nanoparticles and the core-shell nanostructures is only one minute. The presence of Fe3O4 and Pt is confirmed by XRD and XPS. The metallic Pt phase is confirmed because the binding energy of Pt 4f 7/2 is associated to platinum in the zero-valent state. We evaluated the electrochemical activity of the Fe3O4@Pt core-shell nanostructures for the oxygen reduction reaction (ORR). The novel materials show a high electrocatalytic activity and the Koutecky-Levich analysis indicates that the reaction follows a 4 electron transfer mechanism on the Fe3O4@Pt nanostructures prepared by the three stirring processes. Moreover, the mass specific activity of the core-shell materials is as high as that obtained from the Pt-alone catalysts, suggesting that the amount of Pt in these electrodes can be reduced without decreasing the performance.

Keywords: 

electrocatalysts, core-shell nanostructures, magnetite-Pt, ORR

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors thank the Mexican National Council for Science and Technology (CONACYT) for financial support through grant 79870 and the Programa de Redes Temáticas.

  References

[1] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nature Materials, 7, 333 (2008).

[2] H. Wang, C. Xu, F. Cheng, M. Zhang, S. Wang and S.P. Jiang, Electrochem. Commun., 10, 1575 (2008).

[3] N.V. Long, T. Asaka, T. Matsubara and M. Nogami, Acta Materialia, 59, 2901 (2011).

[4] K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada and R.R. Adzic, Electrochim. Acta, 55, 2645 (2010).

[5] G. Wang, H. Wu, D. Wexler, H. Liu and O. Savadogo, J. Alloy Compd., 503, L1 (2010).

[6] Hui Wang, Rongfang Wang, Hao Li, Qunfang Wang, Jian Kang and Ziqiang Lei, Int. J. Hydrogen Energy, 36, 839 (2011).

[7] Yuan Wang and Naoki Toshima, J. Phys. Chem. B, 101, 5301 (1997).

[8] Rongfang Wang, Hui Wang, Bangxing Wei, Wei Wang, Ziqiang Lei, Int. J. Hydrogen Energy, 35, 10081 (2010).

[9] Haili Gao, Shijun Liao, Jianhuang Zeng, Yichun Xie, Dai Dang, Electrochim. Acta, 56, 2024 (2011).

[10] D. Kaplan, M. Alon, L. Burstein, Yu. Rosenberg and E. Peled, J. Power Sources, 196, 1078 (2011).

[11] Nguyen Viet Long, Michitaka Ohtaki, Tong Duy Hien, Jalem Randy and Masayuki Nogami, Electrochim. Acta, 56, 9133 (2011).

[12] D. Morales-Acosta, L.G. Arriaga, L. Alvarez-Contreras, S. Fraire Luna and F.J. Rodríguez Varela, Electrochem. Commun., 11, 1414 (2009).

[13] F.J. Rodriguez Varela, A.A. Gaona Coronado, J.C. Loyola, Qi-Zhong Jiang and P. Bartolo Perez, J. New Mat. Electrochem. Systems, 14, 75 (2011).

[14] Jerome Leveneur, Geoffrey I.N. Waterhouse, John Kennedy, James B. Metson and David R.G. Mitchell, J. Phys. Chem. C, 115, 20978 (2011).

[15] A.S. Arico, A.K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Applied Surface Science, 172, 33 (2001).

[16] Lei Shen, Qi-Zhong Jiang, Tao Gan, Min Shen, F.J. Rodriguez Varela, A.L. Ocampo and Zi-Feng Ma, J. New Mat. Electrochem. Systems 13, 205 (2010).

[17] Hubert A. Gasteiger, Shyam S. Kocha, Bhaskar Sompalli, Frederick T. Wagner, Appl. Catal. B: Environm. 56, 9 (2005).

[18] Yannick Garsany, Olga A. Baturina, Karen E. Swider-Lyons and Shyam S. Kocha, Anal. Chem., 82 6321 (2010).

[19] N.M. Markovic, T.J. Schmidt, V. Stamenkovic and P.N. Ross, Fuel Cells, 1, 105 (2001).

[20] Seth L. Knupp, Miomir B. Vukmirovic, Pradeep Haldar, Jeffrey A. Herron, Manos Mavrikakis and Radoslav R. Adzic, Electrocatal., 1, 213 (2010).

[21] Lirong Kong, Xiaofeng Lu, Xiujie Bian, Wanjin Zhang, and Ce Wang, Appl. Mat. Interf., 3, 35 (2011).

[22] Document Chemical Cleaning of Metals, (nzic.org.nz/Chem Processes/metals/8H.pdf), consulted on January 2012.

[23] Linfei Lai, Guoming Huang, Xiaofeng Wang, Jian Weng, Carbon, 49, 1581 (2011).

[24] Kotaro Sasaki, Kurian A. Kuttiyiel, Dong Su, Radoslav R. Adzic, Electrocatal., 2, 134 (2011).

[25] L.G.R.A. Santos, C.H.F. Oliveira, I.R. Moraes, E.A. Ticianelli, J. Electroanal. Chem., 596, 141 (2006).