Oxygen Reduction Performance of Pt/TiO2-C Electrocatalyst prepared by Two-step Chemical Vapor Deposition

Oxygen Reduction Performance of Pt/TiO2-C Electrocatalyst prepared by Two-step Chemical Vapor Deposition

R.G. González Huerta M.A. Valenzuela R. Vargas García N. Alonso-Vante M. Tufiño Velázquez B. Ruiz-Camacho

Departamento de Ing. Metalúrgica, ESIQIE-Instituto Politécnico Nacional, 07738, México D.F.

Laboratorio de Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional, 07738, México D.F.

IC2MP UMR CNRS 7285, University of Poitiers, 4 rue Michel Brunet, F-86022 Poitiers

Laboratorio de Física Avanzada, ESFM-Instituto Politécnico Nacional, 07738, México D.F.

Corresponding Author Email: 
beatrizruizcamacho@gmail.com, beatrizr@upgto.edu.mx
30 December 2011
10 March 2012
10 April 2012
| Citation

The low durability of Pt/C electro-catalysts in polymer electrolyte membrane fuel cells (PEMFC), e.g., as a result of carbon oxidation to CO2 in an acid medium, has been recognized as one of the most important hindrances to long-term stability. In this work, Pt electrocatalysts supported on TiO2-carbon and Vulcan carbon were prepared by the chemical vapor deposition method. The physical and electrochemical properties of Pt/TiO2-C and Pt/C electrocatalysts were investigated by the characterization techniques of XRD, TEM, CO stripping and cyclic and linear voltammetry. The prepared materials were electrochemically evaluated in the oxygen reduction reaction (ORR) in an acid medium at room temperature. The XRD results show crystalline fcc platinum formation. The mean particle size is between 2 and 4 nm with a spherical morphology. Pt/TiO2-C electrocatalysts showed a higher electrochemical active surface area and better activity results for the ORR compared with the Pt/C samples. The addition of TiO2 to the conventional Pt/C catalyst modifies the electronic properties affecting the oxygen adsorption and improving the catalytic activity for the oxygen reduction reaction.


Pt nanoparticles, TiO2, CVD, oxygen reduction, fuel cells

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

This work has been supported by the IPN under project SIP-20113593, SIP-20120475, multidisciplinary project SIP-13138 and CONACyT project 130254. BRC thanks the PIFI and CONACyT programs for the financial support (scholarship).


[1] W. Vielstich, H. Gasteiger, A. Lamm, Handbook of Fuel Cells-Fundamentals Technology and Applications 3-4 (2003).

[2] W. Jung-Ho, L. Kwan-Young, K. Sung, J. Power Sources, 165, 667 (2007).

[3] T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Electrochem. Comm., 7, 183 (2005).

[4] K.A. Starz, E. Auer, Th. Lehmann, R. Zuber, J. Power Sources, 84, 167 (1999).

[5] N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res., 33, 183 (2003) and references therein. A. Ishihara, Y. Ohgi, K. Matsuzawa, S. Mitsushima, K.-i. Ota, Electrochim. Acta, 55, 8005 (2010).

[6] X. Zhang, H. Zhu, Z. Guo, Y. Wei, F. Wang, J. Power Sources, 196, 3048 (2011).

[7] N. Rajalakshmi, N. Lakshmi, K.S. Dhathathreyan, Int. J. Hydrogen Energy, 33, 7521 (2008) .

[8] L. Xiong, A. Manthiram, Electrochim. Acta, 49, 4163 (2004).

[9] J. Shim, C-R Lee, H-K Lee, J-S Lee, E. Cairns, J. Power Sources, 102, 172 (2001).

[10] K-W Park, K-S. Seol, Electrochem. Comm., 9, 2259 (2007) .

[11] M. Gustavsson, H. Ekström, P Hanarp, L. Eyurenius, G. Lindberg, E. Olsson, B. Kasemo, J. Power Sources, 163, 671 (2007).

[12] S.V. Mentus, Electrochimica Acta, 50, 3609 (2005).

[13] S. von Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, E.C. Palmqvist, J. Power Sources, 180, 185 (2008).

[14] W. Vogel, L. Timperman, N. Alonso-Vante, Appl. Catal., A 377, 167 (2010).

[15] B. Ruiz Camacho, C. Morais, M.A. Valenzuela, N. Alonso-Vante, Cat. Today, in press.

[16] L. Santos, K. Freitas, E. Ticianelli, J. Solid State Electrochem., 11, 1541 (2007).

[17] B. Ruiz-Camacho, M.A. Valenzuela, J.A. Pérez-Galindo, F. Pola, M. Miki-Yoshida, N. Alonso-Vante, R.G. González-Huerta, J. New Mat. Electrochem. Syst., 13, 183 (2010).

[18] M. Harada and H. Einaga, Langmuir 22, 2371 (2006).

[19] J.R. Vargas-Garcia, T. Goto, IOP Publishing Materials Science and Engineering, 20 (2011) 012001, doi: 10.1099/1757-899X/20/1/012001

[20] C. Encarnación Gómez, J.R. Vargas García, J.A. Toledo Antonio, M.A. Cortes Jacome, C. Ángeles Chávez, J. Alloys Compd., 495, 458 (2010).

[21] N. Alonso-Vante, Fuel Cells, 6, 182 (2006).

[22] L.Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Electrochim. Acta, 55, 7558 (2010).

[23] L.G.R.A. Santos, K.S. Freitas, E.A. Ticianelli, J. Solid State Electrochem., 11, 1541 (2007).

[24] B. Ruiz Camacho, R.G. Gonzalez Huerta, M.A. Valenzuela, Journal of Hydrogen Energy, in preparation (2012).

[25] K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M.Markovic, Electrochim. Acta, 53, 3181 (2008).

[26] J, Shim, C.-R. Lee, H.-K. Lee, J.-S. Lee, E.J. Cairns, J. Power Sources, 102, 172 (2001).

[27] L. Xiong, A. Manthiram, Electrochim. Acta, 49, 4163 (2004).

[28] T. Vidakovic, M. Christov, K. Sundmacher, Electrochim. Acta, 52, 5606 (2007).

[29] N.R. Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, W.-Y. Lin, T.f. Carlson, L. Nikiel, W.A. Wampler, S. Sambandam, W. Ramani, J. Electrochem. Soc. 155, B1102 (2008).

[30] K.J.J. Mayrhofer, B.B. Bliznac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J. Phys. Chem. B, 109, 14433 (2005).

[31] A.J. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001, pp. 340-344.

[32] J.J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, J. Power Sources, 172, 229 (2007).