Fabrication and Rate Performance of Spherical LiFePO4 Nanoparticles for High–power Lithium Ion Battery

Fabrication and Rate Performance of Spherical LiFePO4 Nanoparticles for High–power Lithium Ion Battery

Bing HuangXiaodong Zheng Mi Lu Yiming Zhou Yu Chen Su Dong Yu Qiao 

Clean Energy Research and Development Center, Binzhou University, Binzhou, Shandong 256603

Jiangsu Key Laboratory of New Power Batteries, Nanjing, Jiangsu 210046

Corresponding Author Email: 
huangbingbzu@sina.com
Page: 
71-74
|
DOI: 
https://doi.org/10.14447/jnmes.v15i2.71
Received: 
12 September 2011
| |
Accepted: 
14 November 2011
| | Citation
Abstract: 

The spherical LiFePO4/C nanoparticles are synthesized by modified carbothermal reduction method. XRD patterns show that the LiFePO4 compound is orthorhombic crystal structure. SEM and TEM results indicate that the LiFePO4 composite had a spherical morphology with carbon coated and the particle size is nanoscale. Charge/discharge tests and CV curves show that as-prepared sample exhibits discharge capacity of 153 mAh g-1at 0.2 C rate with high electrode reaction reversibility. The discharge capacities of the material are 150, 132, 119, 111, 103 and 96 mAh g-1 at 1 C, 5 C, 10 C, 15 C, 20 C and 25 C rate and high voltage plateaus are achieved. The good rate performance of the composite is due to its nano particle size and spherical morphology, which reduced the diffusion path of lithium ions and electrons, increased the conductive specific surface and improved the processability of the LiFePO4 cathode.

Keywords: 

lithium-ion batteries, cathode materials, LiFePO4, rate performance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was supported by Doctoral Fund of Shandong Province (BS2009NJ001), the Project of Higher Educational Science and Technology Program of Shandong Province (J10LB56) and the Research Fund of Binzhou University (2008ZDL04).

  References

[1] M. Armand, J.M. Tarascon, Nature, 451, 652 (2008).

[2] B. Kang, G. Ceder, Nature, 458, 190 (2009).

[3] W.J. Zhang, J. Power Sources, 196, 2962 (2011).

[4] B. Huang, X. Zheng, X. Fan, G. Song, M. Lu, Electrochim. Acta, 56, 4865 (2011).

[5] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).

[6] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001).

[7] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater., 1, 123 (2002).

[8] P. Subramanya Herle, B. Ellis, N. Coombs, L.F. Nazar, Nature Mater., 3, 147 (2004).

[9] F. Cheng, W. Wan, Z. Tan, Y. Huang, H. Zhou, J. Chen, X. Zhang, Electrochim. Acta, 56, 2999 (2011).

[10] Y. Liu, C. Cao, Electrochim. Acta, 55, 4694 (2010).

[11] M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid State Lett., 6, A207 (2003).

[12] G.T.-K. Fey, K.P. Huang, H.M. Kao, W. H. Li, J. Power Sources, 196, 2810 (2011).

[13] Y. Yang, X.Z. Liao, Z.F. Ma, B.F. Wang, L. He, Y.S. He, Electrochem. Commun., 11, 1277 (2009).

[14] J.T. Son, J. New Mat. Electrochem. Systems, 13, 301 (2010).

[15] C.G. Son, H.M. Yang, G.W. Lee, A.R. Cho, V. Aravindan, H.S. Kim, W.S. Kim, Y.S.Lee, J. Alloys Compd., 509, 1279 (2011).

[16] F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002).

[17] Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang, H. Xie, Electrochim. Acta, 55, 5886 (2010).

[18] X. Zhao, X. Tang, L. Zhang, M. Zhao, J. Zhai, Electrochim. Acta, 55, 5899 (2010).

[19] D.Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochem. Acta, 50, 2955 (2005).

[20] X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang, L. Wang, J. Power Sources, 174, 720 (2007).

[21] K.F Hsu, S.Y Tsay, B.J Hwang, J. Mater. Chem., 14, 2690 (2004).