Synthesis Gas Production by Methane Partial Oxidation on Ni/Fe3O4-Ce0.75Zr0.25O2 Catalysts: Kinetic Study

Synthesis Gas Production by Methane Partial Oxidation on Ni/Fe3O4-Ce0.75Zr0.25O2 Catalysts: Kinetic Study

M. I. Sosa Vazquez J. Salinas Gutierrez D. Delgado Vigil V. Collins-Martinez A. Lopez Ortiz 

Departamento de Materiales Nanoestructurados, Centro de Investigación en Materiales Avanzados,S. C. Miguel de Cervantes 120, Chihuahua, Chih., México 31109

Corresponding Author Email: 
alejandro.lopez@cimav.edu.mx
Page: 
133-139
|
DOI: 
https://doi.org/10.14447/jnmes.v14i2.122
Received: 
October 30, 2010
|
Accepted: 
January 20, 2011
|
Published: 
April 06, 2011
| Citation
Abstract: 

Fe3O4-Ce0.75Zr0.25O2 (FeCZ) is an oxygen carrier material aimed to produce syngas through methane partial oxidation in absence of oxygen gas feed. The objective of the present research is to study the catalytic effect of Ni on FeCZ using an evaluation of the global kinetics (activation energy, reaction rate, order and constant) of its reaction with methane for syngas production. FeCZ and 0.05NiFeCZ (Ni/Fe = 0.05 molar ratio) were synthesized through co-precipitation of their precursor nitrate salts, while 2NiFeCZ was prepared by impregnation of FeCZ with a nickel nitrate solution to obtain a 2 %W Ni material. Samples were calcined at 950°C during 4 hours in air. Kinetic study of oxygen carriers (FeCZ, 0.05NiFeCZ and 2NiFeCZ) reduction with methane was followed through thermogravimetric analysis (TGA) at 5, 7.5 and 10% CH4/Ar and 600, 650 and 700°C. Initial reaction rate was obtained from the slope of the linear region of the weight change signal as a function of time. Results indicate a first order global reaction rate for all materials. Activation energies for samples FeCZ, 0.05NiFeCZ and 2NiFeCZ were 52.2, 39.5 and 28.3 Kcal/mol, respectively. Thus, reflecting the catalytic effect of Ni over the FeCZ global reaction rate.

Keywords: 

Syngas production, methane partial oxidation, oxygen carrier, kinetic study 

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

The authors gratefully acknowledge to CONACYT for funding of this research under the grant SEP-CONACYT No. 403596. Also, the help of Eng. Enrique Torres and M. Sc. Daniel Lardizabal is acknowledged by their valuable support during the experimental activities of the present research. 

  References

[1] World Nuclear Association, Transport and the Hydrogen Economy, Available at http://www.worldnuclear.org/info/inf70.html , June (2010).

[2] Proceedings of the 2001 Hydrogen Program Review Meeting, U.S., DOE, Hydrogen Program, (2001). http://www1.eere.energy.gov/hydrogenandfuelcells/annual_review 2001.html.

[3] T.S. Christensen, and I.I. Primdahl, Hydrocarbon Process. Int. Ed., 73, 39 (1994).

[4] A. López Ortiz, T. De los Ríos, J. Salinas Gutiérrez, D. Delgado Vigil, V. Collins-Martínez, Hidrogeno, Introducción a la energía limpia, Editorial UACM, 25 (2009).

[5] M.I. Sosa Vázquez, M.D. Delgado Vigil, J. Salinas Gutiérrez, V. Collins Martínez A. López Ortiz, J. New Mater Electrochem. Syst., 12, 029 (2009).

[6] R. Sime, J. Kuehni, L. Dsouza, E. Elizondo, S. Biollaz, Int. J. Hydrogen Energy, 28, 491 (2003).  

[7] J. Wolf, J. Yan,  Int. J. Energy Res., 29, 739 (2005).

[8] P. Chiesa, G. Lozza, A. Malandrino, M. Romano, V. Piccolo, Int. J. Hydrogen Energy, 33, 2233 (2008).

[9] K. Otzuka, S. Takenaka, J. Jpn. Petrol Inst., 47, 377 (2004).

[10] K. Otsuka, Y. Wang, E. Sunada, I. Yamanaka, J. Catal., 175, 152 (1998).

[11] S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, J. Catal., 228, 66 (2004).

[12] Q. Zafar, T. Mattisson, B. Gevert, Energy Fuels, 20, 34 (2006).

[13] K.E. Sedor, M.M. Hossain, H.I de Lasa, Chem Eng Sci., 63, 11, 2994 (2008).  

[14] M.M. Hossain, K.E. Sedor, de Lasa, H.I. Chem Eng Sci., 62, 5464 (2007).

[15] T. Mattisson, M. Johansson, M. Lyngfelt, Energy & Fuel, 17, 643 (2003).

[16] T. Mattisson,  M. Johansson, M. Lyngfelt, Energy Fuel, 18, 628 (2004).

[17] T. Mattisson, M. Johansson, M. Lyngfelt, Fuel, 85, 736 (2006).

[18] P. Cho, T. Mattisson, M. Lyngfelt, Ind. Eng. Chem. Res., 45, 968 (2006).

[19] L.F. de Diego, F. Garcia-Labiano, P. Gayan, J. Celaya, J.M. Palacios, J. Adanez, Fuel, 86, 1036 (2007).

[20] A. Abad, T. Mattisson, M. Lyngfelt, A. Ryden, Fuel, 85, 1174 (2006).

[21] A. Abad, J. Adanez, F. Garcia-Labiano, L. de Diego, P. Gayan, J. Celaya, Chem Eng Sci., 62, 533 (2007).

[22] A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, Fuel, 86, 1021 (2007).

[23] M. Mohammad, M. Hossain, H.I. de Lasa, Chem Eng Sci., 63 4433 (2008).

[24] A. Steinfeld,  P. Kuhn, Energy, 18, 239 (1993).

[25] V. Hacker, G. Faleschini, H. Fuchs, R. Fankhauser, G. Simader, M. Ghaemi, B. Spreitz, K. Friedrich, J Power Sour., 71, 226 (1998).

[26] V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, K. Kordesch, J. Power Sour., 86, 531 (2000).

[27] S. Takenaka, V.T.D. Son, and K. Otsuka, Energy Fuels, 18, 820 (2004).

[28] S. Takenaka, K. Nomura, N. Hanaizumi, and K. Otsuka, Appl Catal A., 282, 333 (2005).

[29] K.S. Kang, C.H. Kim, W.C. Cho, K.K. Bae, S.W. Woo, and C.S. Park, Int. J. Hydrogen Energy, 33, 4560 (2008).

[30] Z. Kang, L. Wang, Adv. Mater., 15, 521 (2003).

[31] H. Bao, X. Chen, J. Fang, Z. Jiang, and W. Huang, Catal. Lett., 125, 160 (2008).

[32] E. Lorente, J.A. Peña, J. Herguido, J Power Sourc., 192, 224 (2009).

[33] E. Aneggi, C. De Leitenburg, G. Dolcetti, A. Trovarelli, Catal. Today, 114, 40 (2006).  

[34] D.H. Lee, K.S. Cha, Y.S. Lee, K.S. Kang, C.S. Park, and Y.H. Kim, Int J Hydrogen Energy, 34, 1417 (2009).

[35] V. Galvita, K. Sundmacher, Appl Catal A., 289, 121 (2005).

[36] T. Kodama, Y. Nakamuro, T. Mizuno, J. Solar Energy Engineering, of the ASME, 128, 3 (2006).

[37] N. Gokon, H. Murayama, J. Umeda, T. Hatamachi, T. Kodama, Int. J. Hydrogen Energy, 34, 1208 (2009).

[38] H. Sobukawa, R&D Rev. Toyota CDRL, 37, 1 (2002).

[39] D. Wen-Sheng, J. Ki-Won, R. Hyun-Seog, L. Zhong-Wen, P. Sang-Eon, Catal Lett., 78, 1 (2002).

[40] S. Freni, G. Calogero, S. Cavallaro, J Power Sources, 87, 28 (2000).

[41] J. Dias, J.M. Assaf, J. Power Sources, 137, 264 (2004).

[42] S.Q. Chen, Y. Liu, Int. J. Hydrogen Energy, 34, 4735 (2009).

[43] J. Bessières, A. Bessières, J.J. Heizmann, Int. J. Hydrogen Energy, 5, 585 (1980).

[44] J.A. Peña, E. Lorente, E. Romero, J. Herguido, Catal. Today, 116, 3, 439 (2006).

[45] A. Bonalde, A. Henriquez, M. Manrique, I.S.I.J. International, 45, 1255 (2005).

[46] D. Ghosh, A. Ghosh, I.S.I.J Transactions 26, 186 (1986).

[47] R. Alizadeh, E. Jamshidi, H. Ale-Ebrahim, Chem. Eng. Technol., 30, 1123 (2007).

[48] H. Ale Ebrahim, E. Jamshidi, Trans. Inst. Chem. Eng. A, 79, 62 (2001).

[49] G.F. Froment, K.B. Bischoff, Chemical Reaction Analysis and Design, 2nd Edition John Wiley & Sons, New York. (1990).