Ni/ZrO2-CeO2 Catalysts for the Simultaneous Production of Hydrogen and Carbon Nanotubes

Ni/ZrO2-CeO2 Catalysts for the Simultaneous Production of Hydrogen and Carbon Nanotubes

M. L. Hernandez-PichardoM. A. Valenzuela S. P. Paredes P. del Angel J. A. Montoya de la Fuente 

Instituto Politécnico Nacional-ESIQIE. Laboratorio de Catálisis y Materiales. Zacatenco, 07738, México, D. F.

Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central L. Cárdenas 152, 07730, México, D. F.

Corresponding Author Email: 
mhernandezp@ipn.mx
Page: 
127-131
|
DOI: 
https://doi.org/10.14447/jnmes.v14i2.121
Received: 
15 November 2010
|
Accepted: 
25 January 2011
|
Published: 
7 April 2011
| Citation
Abstract: 

The catalytic methane decomposition (CMD) using Ni/ZrO2-CeO2 catalysts for the simultaneous production of hydrogen and carbon nanotubes, was studied on samples prepared by different synthesis methods. The catalysts were synthesized by the impregnation and coprecipitation methods with or without ultrasound treatment. X-ray diffraction (XRD), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) were the main characterization techniques. It was observed that the Ni impregnated catalyst with ultrasound treatment increases significantly the production of hydrogen and carbon nanotubes in the CDM at 500 °C. The results also indicated that the synthesis of catalysts via coprecipitation generates a higher number of encapsulated Ni particles by both, the ZrO2-CeO2 support and the produced carbon at the end of the reaction.

Keywords: 

Hydrogen Production; Carbon Nanotubes; Catalytic Methane Decomposition; Ultrasound Irradiation Treatment.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors thank to the Instituto Politecnico Nacional for the financial support granted for the development of this work. The authors also recognize the experimental support of the CNMC-IPN for the completion of the presented work, as well as the facilities of the Instituto Mexicano del Petroleo.

  References

[1] E. Antolini, Appl. Catal. B, 74, 324 (2007).

[2] G. Sierra-Gallego, C. Batiot-Dupeyrat, J. Barrault, F. Mondragón, Rev. Fac. Ing. Univ. Antioquia, 44, 7 (2008).

[3] M.L. Hernández-Pichardo, M.A. Valenzuela, P. del Angel, J.A. Montoya de la Fuente, J. New Mat. Electrochem. Syst., 13, 271 (2010).

[4] D. Sebastian, I. Suelves, M.J. Lazaro, and R. Molinera, J. Power Sources, 192, 51 (2009).

[5] Suelves, J.L. Pinilla, M.J. Lazaro, and R. Moliner, Chem. Eng. J., 140, 432 (2008).

[6] X. Zhu, D. Cheng, P. Kuai, Energy & Fuels, 22, 1480 (2008).

[7]  J. Chen, Y. Qiao, and Y. Li, Appl. Catal. A, 337, 148 (2008).

[8] S. Kurasawa, S. Iwamoto, and M. Inoue, Mol. Cryst. Liq. Cryst., 387, 123 (2002).

[9] A. Trovarelli, Catal. Rev., 38, 439 (1996).

[10] W. Dong, K. Jun, H. Roh, Z. Liu, S. Park, Catal. Lett., 78, 215 (2002).

[11] S. Takenaka, H. Ogihara, I. Yamanaka, K. Otsuka, Appl. Catal. A, 217, 101 (2001).

[12] B. Kharisov, U. Ortíz, Ingenierías, 2, 13 (1999).

[13] J.H. Bang, K.S. Suslick, Adv. Mater., 22, 1039 (2010).

[14] S. Damyanova, B. Pawelec, K. Arishtirov, M.V. Martinez-Huerta, J. L.G. Fierro, Applied Catalysis A, 337, 86 (2008).

[15] J.R. Shi, X. Shi, Z. Sun, E. Liu, B.K. Tay, S.P. Lau, Thin Solid Films, 366, 169 (2000).

[16] M. Ramm, M. Ata, K.W. Brzezinka, T. Gross, W. Unger, Thin Solid Films, 354, 106 (1999).

[17] Hua, M. R. Hoffmann, Environ. Sci. Technol., 31, 2237 (1997).

[18] T.J. Mason, J.P. Lorimer, Wiley-VCH Verlag GmbH and Co. KGaA, 1, 120 (2000).

[19] M.S. Hoogenraad, Ph.D. thesis, Utrecht University, (1995)