Evaluation of a ZrO2 Composite Membrane in PEM Fuel Cells Operating at High Temperature and Low Relative Humidity

Evaluation of a ZrO2 Composite Membrane in PEM Fuel Cells Operating at High Temperature and Low Relative Humidity

C. Guzman A. Alvarez Luis A. Godinez O. E. Herrera W. Merida J. Ledesma-Garcia L. G. Arriaga

Centro de Investigación y Desarrollo tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703 Querétaro

Clean Energy Research Centre, University of British Columbia, Vancouver, B.C., Canada, V6T1Z4

División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C. P. 76010 Querétaro

Corresponding Author Email: 
3 December 2010
8 February 2011
7 April 2011
| Citation

A composite membrane containing ZrO2 was tested under simulated and real fuel cell operations. To simulate the fuel cell environment, the composite membrane was tested on a gated cell at low relative humidity (10 %) and high temperature (100 °C). The water flux on the composite membrane was found to be higher than a commercial membrane (Nafion 115), suggesting that under these conditions water molecules are entrapped into the membrane matrix via dipole – dipole interactions. Under real operation conditions, ZrO2 membranes showed better performance at high temperature (140 °C) and low relative humidity (22.9 %) than the commercial Nafion Membrane. The performance results confirmed that composite membranes retain water and help to maintain the membrane hydration. The aging cycle (1750 cycles) showed that the composite membrane under study is stable under extreme operation conditions (22.9% RH and 120 °C).


high temperatures, low relative humidity, ZrO2 composite membrane, Water flux, high temperature fuel cell.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

C. Guzmán and A. Alvarez are grateful to Council for Science and Technology CONACYT for graduate fellowship. The authors thank the Mexican Council for Science and Technology for financial support through SEP-Conacyt 2009-133310 and Fomix-Zacatecas 81728.


[1] M. Winter, R.J. Brodd, Chemical Reviews, 104, 4245 (2004).

[2] K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, Journal of The Electrochemical Society, 149, A256 (2002).

[3] C. Guzmán, Y. Verde, E. Bustos, F. Manriquez, I. Terol, L.G. Arriaga, G. Orozco, ECS Transactions, 20, 413 (2009).

[4] H.A. Abaoud, M. Ghouse, K.V. Lovell, G.N. Al-Motairy, International Journal of Hydrogen Energy, 30, 385 (2005).

[5] E. Billy, F. Maillard, A. Morin, L. Guetaz, F. Emieux, C. Thurier, P. Doppelt, S. Donet, S. Mailley, Journal of Power Sources, 195, 2737 (2010).

[6] Z.R. Ismagilov, M.A. Kerzhentsev, N.V. Shikina, A.S. Lisitsyn, L.B. Okhlopkova, C.N. Barnakov, M. Sakashita, T. Iijima, K. Tadokoro, Catalysis Today, 102, 56 (2005).

[7] S. Martin, P.L. Garcia-Ybarra, J.L. Castillo, Journal of Power Sources, 195, 2443 (2010).

[8] K.A. Starz, E. Auer, T. Lehmann, R. Zuber, Journal of Power Sources, 84, 167 (1999).

[9] W.-Y. Ho, H.-J. Pan, C.-L. Chang, D.-Y. Wang, J.J. Hwang, Surface and Coatings Technology, 202, 1297 (2007).

[10] K. Jayakumar, S. Pandiyan, N. Rajalakshmi, K.S. Dhathathreyan, Journal of Power Sources, 161, 454 (2006).

[11] A.M. Lafront, E. Ghali, A.T. Morales, Electrochimica Acta, 52, 5076, (2007)

[12] K.-H. Lee, S.-H. Lee, J.-H. Kim, Y.-Y. Lee, Y.-H. Kim, M.-C. Kim, D.-M. Wee, International Journal of Hydrogen Energy, 34, 1515 (2009).

[13] S. Lee, H. Jeong, B. Ahn, T. Lim, Y. Son, International Journal of Hydrogen Energy, 33, 5691 (2008).

[14] S. Gamburzev, A.J. Appleby, Journal of Power Sources, 107, 5 (2002).

[15] J. Hu, J. Luo, P. Wagner, O. Conrad, C. Agert, Electrochemistry Communications, 11, 2314 (2009).

[16] H.C. Lee, H.S. Hong, Y.-M. Kim, S.H. Choi, M.Z. Hong, H.S. Lee, K. Kim, Electrochimica Acta, 49, 2315 (2004).

[17] N.F. Jones, D.J. Rozière, J. Bauer, B. Schuster, M. Jeske, Journal of Membrane Science, In Press, Corrected Proof, (2010).

[18] Z.-G. Shao, P. Joghee, I.M. Hsing, Journal of Membrane Science, 229, 43 (2004).

[19] N.H. Jalani, K. Dunn, R. Datta, Electrochimica Acta, 51, 553 (2005).

[20] T. Jian–Hua, G. Peng–Fei, Z. Zhi–Yuan, W.H. L, S. Zhong–Qiang, Journal of Hydrogen Energy, 33, 5686 (2008)

[21] Sacca, I.G.A. Carbone, R. Pedicini, E. Passalacqua, Journal of Power Sources, 163, 47 (2006).

[22] M.P. Rodgers, Z. Shi, S. Holdcroft, Journal of Membrane Science, 325, 346 (2008).

[23] S. Melada, M. Signoretto, S.A. Ardizzone, C.L. Bianchi, Catalysis Letters, 75, 3 (2001).

[24] M.L. Rojas-Cervantes, R.M. Martin-Aranda, A.J. López-Peinado, J.D. López-Gonzalez, Journal of Materials Science, 29, 3743 (1994).

[25] V. Santos, M. Zeni, C.P. Bergmann, J.M. Hohemberger, Rev.Adv.Mater.Sci., 17, 62 (2008).

[26] A.S. Aricò, P. Cretì, P.L. Antonucci, V. Antonucci, Electrochemical and Solid-State Letters, 1, 66 (1998).

[27] V. Antonucci, A.D. Blasi, V. Baglio, R. Ornelas, F. Matteucci, J. Ledesma-Garcia, L.G. Arriaga, A.S. Aricò, Electrochimica Acta, 53, 7350 (2008).

[28] A.S. Aricò, V. Baglio, A.D. Blasi, P. Creti', P.L. Antonucci, V. Antonucci, Solid State Ionics, 161, 251 (2003).

[29] V. Baglio, A.S. Aricò, A.D. Blasi, V. Antonucci, P.L. Antonucci, S. Licoccia, E. Traversa, F.S. Fiory, Electrochimica acta, 50, 1241 (2005).

[30] T. Romero, W. Mérida, Journal of Membrane Science, 338, 135 (2009).

[31] Alvarez, C. Guzmán, A. Carbone, A. Saccà, I. Gatto, R. Pedicini, E. Passalacqua, R. Nava, R. Ornelas, J. Ledesma-García, L.G. Arriaga, J. Power Sources, in press.

[32] P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benziger, Journal of Membrane Science, 301, 93 (2007).

[33] P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benziger, ECS Transactions, 11, 609 (2007).

[34] Y.D. Premchand, M.L.D. Vona, P. Knauth, Proton-Conducting Nanocomposites and Hybrid Polymers, in: P. Knauth, J. Schoonman (Eds.) Nanocomposites, Ionic Conducting Materials and Structural Spectroscopies, Springer, 2008