PtNi and CoNi Film Electrocatalysts Prepared by MOCVD for the Oxygen Reduction Reaction in Alkaline Media

PtNi and CoNi Film Electrocatalysts Prepared by MOCVD for the Oxygen Reduction Reaction in Alkaline Media

M. A. Garcia-Contreras|S. M. Fernandez-Valverde J. R. Vargas-Garcia 

Departamento de Química, Instituto Nacional de Investigaciones Nucleares, C.P. 52045

Departamento de Ing. Metalúrgica, ESIQIE-IPN, C.P. 07300, México, D.F.

Corresponding Author Email: 
miguel.garcia@inin.gob.mx
Page: 
81-85
|
DOI: 
https://doi.org/10.14447/jnmes.v14i2.114
Received: 
1 November 2010
|
Accepted: 
3 February 2011
|
Published: 
5 April 2011
| Citation
Abstract: 

CoNi and PtNi film electrocatalysts were prepared by Metal-Organic Chemical Vapour Deposition (MOCVD) and their electrocatalytic activity for the oxygen reduction reaction (ORR) in 0.5 M KOH was investigated by cyclic voltammetry and Rotating Disk Electrode techniques. Experiments included working electrodes of Co, Ni and Pt prepared also by MOCVD for comparison. The film electrocatalysts were characterized by X-ray diffraction, Scanning Electronic Microscopy and Energy dispersive X-ray analysis. Films thickness was about 200-250 nm and nanocrystallites were found in the range of 12 to 30 nm. In the same experimental conditions, the overpotential for the ORR at a current density of 1 mA cm-2 for PtNi film was 120 mV lower than the overpotential of Pt film electrocatalyst, and an enhanced activity was observed on PtNi with respect to Pt. The electrochemical response for the oxygen reduction reaction on CoNi film was higher than those of elemental Ni and Co films obtained by MOCVD. A good stability was obtained in a chronoamperometry test for the PtNi electrode, only affected by oxygen flow variations.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

This work was supported by ININ through project ININ-CB-906. The assistance given by L. Carapia in SEM images and EDAX analysis is gratefully acknowledged. The authors would also like to thank M. Espinosa and I. Martínez for assisting with the XRD analysis.

  References

[1] E. Yeager, Electrochim. Acta, 29, 1527 (1984).

[2] “Fuel Cell Handbook”, 4th ed., US Department of Energy, 1998.

[3] Y. Kiros, S. Schwartz, J. Power Sources, 36, 547 (1991).

[4]  Y. Kiros, O. Lindstron, T. Kaimakis, J. Power Sources, 45, 219 (1993).

[5] L. Geniès, R. Faure, R. Durand, Electrochim. Acta, 44, 1317 (1998).

[6] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc., 146, 3750 (1999).

[7] Y. Kiros, J. Electrochem. Soc., 7, 2152 (1996).

[8] M. Min, J. Cho, K. Cho, H. Kim, Electrochim. Acta, 45, 4211 (2000).

[9] M.D. Obradovic, B.N. Grgur, Lj.M. Vracar, J. Electroanal. Chem., 548, 69 (2003).

[10] M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, J. Electrochem. Soc., 141, 2659 (1994).

[11] Fabio H.B. Lima, Edson A. Ticianelli, Electrochim. Acta, 49, 4091 (2004).

[12] T. Toda, H. Igarashi, M. Watanabe, J. Electroanal. Chem., 460, 258 (1999).

[13] A.S. Arico, A.K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci., 172, 33 (2001).

[14] A.K. Shukla, M. Neergat, P. Bera, V. Jayaram, M.S. Hedge, J. Electroanal. Chem., 504, 111 (2001).

[15] S. Mukerjee, S. Srinivasan, M.P. Soriana, J. McBreen, J. Phys. Chem., 99, 4577 (1995).

[16] J. Cho, W. Roh, D. Kim, J. Yoon, J. Choy, H. Kim, Faraday Trans., 94, 2835 (1998).

[17] K. Kinoshita, in: “Electrochemical Oxygen Technology”, vol. 19, Wiley, New York, 1992.

[18] J.A. Poirier, G.E. Stoner, J. Electrochem. Soc., 141, 5 (1994).

[19] P.S. Patil, L.D. Kadam, C.D. Lokhande, Thin Solid Films, 272, 29 (1996).

[20] J.G. Cook, M.P. van der Meer, Thin Solid Films, 144, 165 (1986).

[21] E. Fujii, H. Torii, A. Tomozawa, R. Takayama, T. Hirao, J. Mater. Sci., 30, 6013 (1995).

[22] D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater., 13, 588 (2001).

[23] T. Maruyama, T. Nakai, Sol. Energy, Mater., 23, 25 (1991).

[24] K. Shalini, A.U. Mane, S. Choopun, M. Rajeswari, S.A. Shivashankar, J. Crystal Growth, 231, 242 (2000).

[25] A.U. Mane, K. Shalini, A. Wohlfart, A. Devi, S.A. Shivashankar, J. Crystal Growth, 240, 157 (2002).

[26] T. Maruyama, S. Aria, J. Electrochem. Soc., 143, 1383 (1996).

[27] D. Larcher, G. Sudant, J-B. Leriche, Y. Chabre, J-M. Tarrascon, J. Electrochem. Soc., 149, A234 (2002).

[28] K. Nakaoka, M. Nakayama, K. Ogura, J. Electrochem. Soc., 149, C159 (2002).

[29] R.J. Kennedy, IEEE Trans. Magn., 31, 3829 (1995).

[30] E. Barrera, T. Viveros, A. Avila, P. Quintana, M. Morales, N. Batina, Thin Solid Films, 346, 138 (1999).

[31] M. Sato, H. Hara, H. Kuritani, T. Nishide, Sol. Energy Mater. Cells, 45, 43 (1997).

[32] J.A. Montes de Oca, J.R. Vargas, J. Godínez, J. Surf. Eng., 16, 66 (2000).

[33] H.O. Pierson, “Handbook of Chemical Vapor Deposition”, 2nd Ed. Noyes Publications, 1999.

[34] A.R. West, “Solid State Chemistry and Its Applications”, Wiley, New York, 1984.

[35] M.A. Paranjape, A.U. Mane, A.K. Raychaudhuri, K. Shalini, S. A. Shivashankar, B.R. Chakravarty, Thin Solid Films, 413, 8 (2002).

[36] M. Pourbaix, “Atlas of Electrochemical Equilibrium in Aqueous Solutions”, 2nd English ed., p. 330. NACE, Houston, 1974.

[37] L.D. Burke, O.J. Murphy, J. Electroanal. Chem., 109, 373 (1980).

[38] L.D. Burke, M.E. Lyons, O.J. Murphy, J. Electroanal. Chem., 132, 247 (1982).

[39] T. Toda, H. Igarashi, M. Watanabe, J. Electrochem. Soc., 145, 4185 (1998).

[40] J.F. Drillet, A. Ee, J. Friedemann, R. Kötz, B. Schnyder, V.M. Schmidt, Electrochim. Acta, 47, 1983 (2002).

[41] K. Tammeveski, T. Tenno, J. Claret, C. Ferrater, Electrochim. Acta, 42, 893 (1997).

[42] D.B. Sepa, M.V. Vojnovic, A. Damjanovic, Electrochim. Acta, 25, 1491 (1980).