Electrochemical Properties of Closo-2,3-dicarbaundecaborane in Dichloromethane at a Glassy Carbon Electrode using Potentiostatic, Galvanostatic and Digital Simulation Methods

Electrochemical Properties of Closo-2,3-dicarbaundecaborane in Dichloromethane at a Glassy Carbon Electrode using Potentiostatic, Galvanostatic and Digital Simulation Methods

H. M. Al-Bishri I. S. El-HallagE. H. El-Mossalamy 

Chemistry Department, Faculty of Science, King Abdul-Aziz University, Jeddah, P.O.Box 80203, Jeddah 21589

Chemistry Department, Faculty of Science, Tanta University, Tanta 31527

Chemistry Department, Faculty of Science, Benha University, Benha

Corresponding Author Email: 
ielhallag@yahoo.co.uk
Page: 
51-57
|
DOI: 
https://doi.org/10.14447/jnmes.v14i1.130
Received: 
6 October 2010
|
Accepted: 
26 November 2010
|
Published: 
5 January 2011
| Citation
Abstract: 

Electrochemical properties of closo-2,3-dicarbaundecaborane cluster have been investigated potentiostatically using cyclic voltammetry, convolutive voltammetry and galvanostatically via chronopotentiometry techniques combined with digital simulation method at a glassy carbon electrode in 0.1 M tetrabutylammonium perchlorate (TBAP) in solvent dichloromethane. The electroreduction of the carborane cluster exhibited two reduction peaks. The first peak was attributed to a two - electron reduction of carborane to form the dianion. Both the charge transfer processes were followed by fast chemical processes. The second peak represents the further reduction of the dianion by gain one electron to form the trianion followed by a fast chemical reaction. The chemical processes which follow the two - steps of the charge transfer may be due to fast isomerization or structural rearrangement The chemical and lectrochemical parameters of the investigated carborane were determined experimentally and verified theoretically via digital simulation method.

Keywords: 

cyclic voltammetry, convolutive voltammetry, dicarbaundecaborane, chronopotentiometry, digital simulation

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusion
Acknowledgements

The authors are grateful to prof. J. Kennedy, School of Chemistry, Leeds University, UK, for providing the investigated carborane cluster.

  References

[1] M.F. Hawthorne, A. Maderna, Chem. Rev., 99, 3421 (1999).

[2] W. Chen, M. Diaz, J. Rockwell, C.B. Knobler, M.F. Hawthorne, "Comptes Rendus de I'Acad'emie des Sciences-S'erie IIc-Chemie, 3, 223 (2000).

[3] T.E. Paxson, M.K. Kaloustian, G.M. Tom, R.J. Wiersema, M.F. Hawthorne. J. Am. Chem. Soc., 94, 4882 (1971).

[4] L.F. Warren, M.F. Hawthorne, J. Am. Chem. Soc., 92, 1157 (1971).

[5] N.N. Greenwood, A. Earnshaw, 1984 Chemistry of the Elements, Pergamon Press Plc Oxford, England (1984).

[6] J. Ple¡sek , Chem. Rev., 92, 269 (1992).

[7] R.E. Williams, J.W. Bausch, in: Bubnov Yu N (Ed.) 2003 Boron Chemistry at the Beginning of the 21st Century, Editorial URSS, Moscow, p. 3; R.E. Williams, Chem. Rev., 92, 177 (1976); R.E. Williams in Advances in Inorganic Chemistry and Radiochemistry, 18, 67 (1976).

[8] M.A. Fox, K. Wade, in: Yu.N. Bubnov (Ed.) 2003, Boron Chemistry at the Beginning of the 21st Century, Editorial URSS, Moscow, p. 17 (2003); K. Wade, in Advances in Inorganic Chemistry and Radiochemistry, 18, 44 (1976).

[9] P. Rague von Schleyer, K. Najafian, Inorg. Chem., 37, 3454 (1998).

[10] M.A. Fox, A.K. Hughes, J.M. Malget. J. Chem. Soc., Dalton Trans. 3505 (2002).

[11] B.M. Gimarc, B. Dai, D.S. Warren, J.J. Ott, J. Am. Chem. Soc., 112, 2597 (1990).

[12] T.E. Berry, F.N. Tebbe, M.F. Hawthorne, Tetrahedron Lett., 12, 715 (1965); F.N. Tebbe, P.M. Garrett, M.F. Hawthorne, J. Am. Chem. Soc., 90, 869 (1968).

[13] K.P. Callahan, W.J. Evans, F.Y. Lo, C. E. Strouse, M.F. Hawthorne, J. Am. Chem. Soc., 97, 296 (1975).

[14] J.H. Morris, D.J. Reed, Chem. Res. Miniprint, 282, 3567 (1980).

[15] A. Drummond, J.F. Kauy, J.H. Morris, D.J. Reed, J. Chem. Soc., Dalton Trans., 284 (1980).

[16] J.F. Kay, J.H. Morris, D. Reed, J. Chem. soc., 1917 (1980).

[17] J.H. Morris, D. Reed, Inorg. Chim. Acta, 54, L7 (1981).

[18] J.H. Morris, D. Reed, J. Chem. Res. miniprint, 282, 3567 (1980).

[19] P.J. Dolan, J.H. Kindsvater, D.J. Peters, Inorg. Chem., 15, 2170 (1976).

[20] J.H. Morris, D. Reed, J. Chem. Res., Synop., 380 (1980).

[21] T.G. Drummond, M.G. Hill, J.K. Barton, Nature Biotech., 21, 1192 (2003).

[22] J. Wang, Anal. Chim. Acta, 63, 469 (2002).

[23] E. Palecek, F. Jelen, Critical Rev. Anal. Chem., 32, 261 (2002).

[24] D.A. Di Giusto, W.A. Wlassoff, S. Giesebrecht, J.J. Gooding,G.C. King, Angew, Chem. Int. Ed. Engl., 43, 2809 (2004).

[25] J. Wang, G. Liu, A. Merkoci, J. Am. Chem. Soc., 125, 3214 (2003).

[26] Z.J. Leso Nikowski, Curr. Org. Chem., 11, in press (2007).

[27] P. Zanello, in: Inorganic Electrochemistry. Theory, Practice and Application, RSC, Cambridge, UK (2003).

[28] C. Elschenbroich, A. Salzer, Organometallics, VCH, New York (1992).

[29] A.B. Olejniczak, J. Plesek, O. Kriz, Z.J. Lesnikowski, Angew. Chem. Int. Ed. Engl., 42, 5740 (2003).

[30] B.O. Agnieszka, C. Maddalena , F. Serena, Z. Piero, J.L. Zbigniew, Electrochem. Commun., 9, 1007 (2007).

[31] C. Masalles, F. Teixidor, S. Borros, C. Vinas, J Organomet. Chem, 657, 239 (2002).

[32] J.Kennedy, University of Leeds (Private communication).

[33] R.S. Nicholson, I. ShainI, Anal. Chem, 36, 706 (1964).

[34] I.S. El-Hallag, M.M. Ghoneim, E. Hammam, Anal. Chim, Acta, 414, 173 (2000).

[35] S.A. El-Daly, I.S. El-Hallag, E.M. Ebeid E M and Ghoneim M M, Chin. J.Chem., 27, 241 (2009).

[36] E. Gileadi, U. Eisner, J. Electroanal. Chem., 28, 81 (1981).

[37] N.K. Bhutti, M.S. Subhani, A.Y. Khan, R. Qureshi, A. Rahman, Turk. J. Chem., 29, 659 (2005).

[38] M. Grenness, K.B. Oldham, Anal. Chem., 44, 1121 (1972).

[39] L. Nadjo, J.M. Saveant, D. Tessier, J. Electroanal. Chem., 52, 403 (1974).

[40] J.M. Saveant, D. Tessier, J. Electroanal. Chem., 77, 225 (1977).

[41] K.B. Oldham, C.G. Zoski, J. Electroanal. Chem., 145, 225 (1983).

[42] J.C. Myland, K.B. Oldham, C.G. Zoski, J. Electroanal. Chem., 193, 3 (1985).

[43] K.B. Oldham, J. Chem. Soc., Faraday Trans. 19, 1099 (1986).

[44] J. Leddy, J. Electroanal. Chem., 300, 295 (1991).

[45] J.M. Saveant, M. Tessier, J. Electroanal. Chem., 61, 251 (1975).

[46] I.S. El-Hallag, A.M. Hassanien, Collect. Czech. Chem. Commun., 64, 1953 (1999).

[47] I.S. El-Hallag, M.M. Ghoneim, 1999 Monatsh. Chem., 130, 525 (1999).

[48] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York (1980).

[49] P. Dalrymple-Alford, M. Goto, K.B. Oldham, Anal. Chem. 47, 390 (1977).

[50] I.S. El-Hallag, Monats. Chem., 129, 629 (1998).

[51] R.A. Marcus, Electrochimica Acta, 13, 995 (1968).