Improving the Sensitivity of a Mass Sensor for Azo Dye using Metal Films Modified Silver/Quartz and Gold /Quartz Electrodes

Improving the Sensitivity of a Mass Sensor for Azo Dye using Metal Films Modified Silver/Quartz and Gold /Quartz Electrodes

Lai-Hao WangYi-Chieh Li 

Department of Medical Chemistry, Chia Nan University of Pharmacy and Science 60 Erh-Jen Road, Section 1, Jen Te, Tainan 71743

Corresponding Author Email: 
201466.wang@msa.hinet.net
Page: 
43-49
|
DOI: 
https://doi.org/10.14447/jnmes.v14i1.129
Received: 
30 October 2010
|
Accepted: 
7 January 2011
|
Published: 
15 February 2011
| Citation
Abstract: 

We electroreduced azo dye (D&C orange No. 4; e.g. “Drug and Cosmetic” No. 4) on silver (Ag)/quartz and gold (Au)/quartz, electrochemically deposited it on various metal films (lead (Pb), zinc (Zn), copper (Cu), tin (Sn), antimony (Sb), and cadmium (Cd) on Ag /quartz and Au/quartz substrates, and investigated it using electrochemical quartz crystal microbalance (EQCM) analysis with AT-cut quartz crystals (9-MHz). We found that the electrocatalytic property of antimony was better than that of the other metals tested. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) images clearly showed the structure of the adsorbed D&C orange No. 4 molecule layers on metal-modified Ag/quartz and Ag/quartz electrodes.

Keywords: 

Azo dye; Ag/quartz and Au /quartz electrodes; metal film- Ag/quartz and Au/quartz electrodes.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was financially supported by grant National Science Council of the Republic of China (NSC 95-2113-M-041-002).

  References

[1] Venkataraman K., The analytical chemistry of synthetic dyes:Analysis of food, drug and cosmetic colors. John Wiley & Sons, New York, 1976.

[2] Lake L.R., Indirect food additives: adjuvants, production aids, and sanitizers. Fed Regist 64, 1999.

[3] Ward M.D., Buttry D.A., Sci., 249, 1000 (1999).

[4] Jeffrey C.A., Storr W.M., Harrington D.A., J. Electroanal. Chem., 569, 61 (2004).

[5] Borges G.L., Kanazawa K.K., Gordon J.G., Ashley K., Richer J., J. Electroanal. Chem., 364, 281 (1994).

[6] Matsushima J.T., Trivinho-Strixino F., Pereira E.C., Electrochim. Acta, 51, 1960 (2006).

[7] Evans C.D., Nicic I., Chambers J.Q., Electrochim. Acta, 40, 2611 (1995).

[8] Herzog G., Srrigan D.W.M., Electroanal. Chem., 17, 1816 (2005).

[9] Lachenwitzer A., Magnssen O.M., J. Phys. Chem., B104, 7424 (2000).

[10] Song K.D., Kim K.B., Han S.H., Lee H.K., Electrochem. Commun., 5, 460 (2003).

[11] Marlot A., Vedel J., J. Electrochem. Soc., 146, 177 (1999).

[12] Kelly J.J., Kern P., Landolt D., J. Electrochem. Soc., 147, 3725 (2000).

[13] I.   Serebrennikova I., Birss V.I., J. Electroanal. Chem., 493, 108 (2000).

[14]  Neshkova M.T., Nikolova V.D., Bond A.M., Petrov V., Electrochim. Acta., 50, 5606 (2005).

[15]  Cho K.C., Yoon S.K., Jung M.C., Kim H., Colloid and Surf., A134, 59 (1998).

[16]  Sterenson K.J., Gao X.P., Hatchett D.W., White H.S., J. Electroanal. Chem., 47, 43 (1998).

[17]  Oden P.I., Thundat T., Warmack R.T., Scanning microscopy, 12, 449 (1998).

[18]  Saloniemi H., Kemell M., Ritala M., Leskelia M., J. Mater. Chem., 10, 519 (2000).

[19]  Sauerbrey G., Phys., 155, 206 (1959).