Nanomaterials for Photoelectrochemical Solar Cells: Computational Molecular Characterization of 3,4-Diphenyl-4-(4-Hydroyphenyl)-1,2,5-Thiadiazoline 1,1-Dioxide

Nanomaterials for Photoelectrochemical Solar Cells: Computational Molecular Characterization of 3,4-Diphenyl-4-(4-Hydroyphenyl)-1,2,5-Thiadiazoline 1,1-Dioxide

Norma Flores-Holguin Luz Maria Rodriguez-Valdez Daniel Glossman-Mitnik 

Grupo NANOCOSMOS - Centro de Investigación en Materiales Avanzados, SC, Complejo Industrial Chihuahua - Chihuahua, Chih. 31109 - Mexico

Facultad de Ciencias Químicas - Universidad Autonóma de Chihuahua - Nuevo Campus Universitario - Chihuahua, Chih. 31125 - Mexico

Corresponding Author Email: 
daniel.glossman@cimav.edu.mx
Page: 
361-367
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.142
Received: 
18 March 2010
| |
Accepted: 
10 November 2010
| | Citation
Abstract: 

In this work, we make use of a model chemistry within Density Functional Theory (DFT) recently presented, which is called CHIH-DFT, to calculate the molecular structure of 3,4-diphenyl-4-(4-hydroxyphenyl)-1,2,5-thiadiazoline 1,1-dioxide (Tphenol), as well to predict its infrared (IR), ultraviolet (UV-Vis) and fluorescence (Fluo) spectra, the dipole moment and polarizability, the free energy of solvation in different solvents as an indication of solubility, and the chemical reactivity parameters that arise from Conceptual DFT. The calculated values are compared with the available experimental data for this molecule as a means of validation of our proposed model chemistry.

Keywords: 

Molecular structure, IR, UV-Vis, Polarizability, Conceptual DFT

1. Introduction
2. Theory and Computational Details
3. Results and Discussion
4. Conclusion
Acknowledgments

This work has been partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) and by Fondo Mixto del Estado de Baja California (FOMIX-BC) through Project 69363. N.F.H. and D.G.M. are researchers of CONACYT and CIMAV. L.M.R.V. is a researcher of CONACYT and UACh.

  References

[1] T. Sargent, The Dance of Molecules - How Nanotechnology is Changing our Lives, Thunders Mouth Press, New York, 2006.

[2] Nanostructured Materials for Solar Energy Conversion, T. Soga (Ed.), Elsevier B.V., Amsterdam, The Netherlands, 2006.

[3] J. Roncali, Accounts of Chemical Research 42, 1719 (2009).

[4] R.G. Parr and W. Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[5] Daniel Glossman-Mitnik, Theoretical Chemistry Accounts, 117, 57 (2007).

[6] Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Mo-rokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A.G. Baboul, S. Cli?ord, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

[7] N. Flores-Holguín and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 681 (2004) 77.

[8] N. Flores-Holguín and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 717 (2005) 1.

[9] N. Flores-Holguín and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 723 (2005) 231.

[10] A.M. Mendoza-Wilson and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 681, 71 (2004).

[11] A.M. Mendoza-Wilson and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 716, 67 (2005).

[12] A.M. Mendoza-Wilson and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 97, (2006).

[13] L.M. Rodríguez-Valdez, A. Martínez-Villafañe and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 681, 83 (2004).

[14] L.M. Rodríguez-Valdez, A. Martínez-Villafañee and D. Glossman-Mitnik, J. Mol. Struct., THEOCHEM, 716, 61 (2005).

[15] L.M. Rodríguez-Valdez, W. Villamisar, M. Casales, J.G. González-Rodriguez, Alberto Martínez-Villafañe, L. Martínez, Daniel Glossman-Mitnik, Corr. Sci., 48, 4053 (2006).

[16] D. Glossman-Mitnik, J. Mol. Model., 13, 43 (2007).

[17] D. Glossman-Mitnik, Spect. Acta Part A, 66, 208 (2007).

[18] A. Favila-Pérez, M. Gallo-Estrada and D. Glossman-Mitnik, J. Mol. Model., 13, 505 (2007).

[19] B. Adamo and V. Barone, J. Chem. Phys., 110, 6158 (1999).

[20] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

[21] J.C. Slater, Quantum Theory of Molecular and Solids, Vol. 4: The Self-Consistent Field for Molecular and Solids, McGraw-Hill, New York, 1974.

[22] S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980).

[23] A.D. Becke, Phys. Rev. A, 38, 3098 (1988).

[24] C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37 (1988) 785.

[25] A.D. Becke, J. Chem. Phys., 98, 5648 (1993).

[26] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B, 46, 6671 (1992).

[27] J. Tao, J. Perdew, V. Staroverov, and G.E. Scuseria, Phys. Rev. Lett., 91, 146401 (2003).

[28] V.N. Staroverov, G.E. Scuseria, J. Tao and J.P. Perdew, J. Chem. Phys., 119, 12129 (2003).

[29] E. Lewars, Computational Chemistry - Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Kluwer Academic Publishers, Norwell, MA, 2003.

[30] D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Reald-World Problems, John Wiley & Sons, New York, 2001.

[31] F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, Chichester, England, 2007.

[32] C.J. Cramer, Essentials of Computational Chemistry - Theories and Models, John Wiley & Sons, Chichester, England, 2002.

[33] R.E. Stratmann, G.E. Scuseria and M.J. Frisch, J. Chem. Phys., 109, 8218 (1998).

[34] R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996).

[35] M.E. Casida, C. Jamorski, K.C. Casida and D.R. Salahub, J. Chem. Phys., 108, 4439 (1998).

[36] S.I. Gorelsky, SWizard program, http://www.sg-chem.net/.

[37] M.F. Rozas, O.E. Piro, E.E. Castellano, M.V. Mirífico, and E.J. Vasini, Synthesis, 16, 2399 (2002).

[38] A. Toro-Labbé and J. Zevallos, J. Chil. Chem. Soc., 48, 39 (2003).

[39] S.I. Gorelsky, AOMix program, http://www.sg-chem.net.