Li Promoted Sodium Zirconates as High Temperature Absorbent

Li Promoted Sodium Zirconates as High Temperature Absorbent

V. Guzman VelderrainD. Barraza Jimenez D. Lardizabal Gutierrez D. Delgado Vigil J. Salinas Gutierrez A. Lopez Ortiz V. Collins-Martinez

Departamento de Química de Materiales, Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Chihuahua, Chih., México 31109.

Corresponding Author Email: 
virginia.collins@cimav.edu.mx; alejandro.lopez@cimav.edu.mx
Page: 
295-299
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.173
Received: 
27 November 2009
| |
Accepted: 
10 February 2010
| | Citation
Abstract: 

Previous studies reported that Na2ZrO3 exhibited better high temperature CO2 capture features than other Li-base materials towards its use in hydrogen production. This work is aimed to increase Na2ZrO3 absorption capacity by the addition of Li. Na2ZrO3 was synthesized by solid-state reaction and impregnated with LiNO3 at different Li/Na molar ratios: 0, 0.03, 0.05, 0.1 and 0.25. Characterization consisted in XRD and SEM. Absorbents were evaluated by TGA at 600 °C, 80 % CO2/Ar (absorption) and 800 °C, air (regeneration). XRD results found the Na2ZrO3 structure in all samples. However, Li promoted samples presented substitution of Na by Li in the Na2ZrO3 structure. According to TGA, absorption/regeneration kinetics was not modified by the effect of Li. Instead, CO2 capture capacity increased with Li content up to a limit between 10 to 25 % mol. This was attributed to formation of Na4ZrO4 type structures, which can be responsible of the increase in capture capacity.

Keywords: 

Li promoted Na2ZrO3, High temperature CO2 absorption

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors gratefully acknowledge MSc. Enrique Torres, for his support during the XRD studies in the present research. The authors desire to acknowledge specially to The National Nanotechnology Laboratory at CIMAV.

  References

[1] E. L. Draper, R. A. Becker, “Research and Development Needs for the Sequestration of Carbon Dioxide as Part of a Carbon Management Strategy”, The National Coal Council: Washington, D. C. (2000).

[2] M. Kato, S. Yoshikawa, K. Esaki, K. Nakagawa, “Novel CO2 Absorbents Using Lithium-containing Oxides”, In Toshiba Corporation. INTERMAC, Japan Electric Measuring Instruments Manufacturers' Association, Joint Technical Conference, Paper ID: SE-3, 1021 (2001).

[3] A. Lopez-Ortiz, D. P. Harrison, Ind. Eng. Chem. Res., 40, 5102 (2001).

[4] A. Silaban, D. P. Harrison, Chem. Eng. Comm., 147, 149 (1996).

[5] C. Han, D. P. Harrison, Sep. Sci. Technol., 32, 681 (1997).

[6] A. Bandi, M. Specht, P. Sichler, N. Nicoloso, “In situ gas conditioning in fuel reforming for hydrogen generation”, 5th International Symposium on Gas Cleaning at High Temperature, Morgantown West Virginia, (2002). http://www.zsw-bw.de/en/docs/research/REG/pdfs/REG_5th_ISGC_2002.pdf.

[7] J. R. Hufton, S. G. Mayorga, S. Sircar, AIChE J., 45, 248 (1999).

[8] Y. Ding, E. Alpay, Process Saf. Environ. Prot., 79, 45 (2001).

[9] T. Ohashi, K. Nakagawa “Effect of Potassium Carbonate Additive on CO2 Absorption in Lithium Zirconate Powder” In Materials and Devices Research Laboratories, Research and Development Center, Toshiba Corporation, Kawasaki, Japan. Materials Research Society Symposium Proceedings, 547 Solid-State Chemistry of Inorganic Materials II, 249, (1999).

[10] M. Kato, S. Yoshikawa, K. Nakagawa, J. Mater. Sci. Lett., 21, 485 (2002).

[11] A. López Ortiz, N. G. Pérez Rivera, A. Reyes Rojas, D. Lardizábal Gutiérrez, Sep. Sci. Technol., 39, 3559 (2004).

[12] J. Ida, R. Xiong, Y. S. Lin, Separ. Purif. Tech., 36, 41 (2004).

[13] D. Barraza Jiménez, V. Collins-Martínez, A. Reyes Rojas, V. Guzmán-Velderraín, A. López-Ortiz, Proceedings of the 2004 AIChE Annual Meeting/ November 10th Austin, TX, Novel Developments in Adsorption 263 (2004).

[14] K. Nakagawa, T. J. Ohashi, J. Electrochem. Soc., 145, 1344 (1998)

[15] T. Zhao, E. Ochoa-Fernández, R. Magnus, C. De, Chem. Mater., 19, 3294 (2007).

[16] S. Y. Li, Y. M. Xiong, W. Q. Mo, R. Fan, C. H. Wang, X. G. Luo, Z. Sun, H. T. Zhang, L. Li, L. Z. Cao, X. H. Chen, Phys. C: Superconductivity, 363, 219 (2001).

[17] H. Pfeiffer, E. Lima, P. Bosch, Chem. Mater., 18, 2642 (2006).

[18] Encyclopedia Britannica Volume V28, 991 (1991). http://encyclopedia.jrank.org/YAK_ZYM/ZIRCONIUM.html

[19] D. Sood, R. Prasad, J. Nucl. Mater., 228, 83 (1996).

[20] L. O. Gamboa Hernández, D. Lardizábal Gutiérrez, V. Collins-Martínez, A. López Ortiz, J. New Mater. Electrochem. Syst., 11, 137 (2008).